Subsemigroups of Stone-Čech compactifications

Author(s):  
Talin Budak ◽  
Nilgün Işik ◽  
John Pym

The Stone–Čech compactification βℕ of the discrete space ℕ of positive integer is a very large topological space; for example, any countable discrete subspace of the growth ℕ* = βℕ/ℕ has a closure which is homeomorphic to βℕ itself ([23], §3·5] Now ℕ, while hardly inspiring as a discrete topological space, has a rich algebrai structure. That βℕ also has a semigroup structure which extends that of (ℕ, +) and in which multiplication is continuous in one variable has been apparent for about 30 years. (Civin and Yood [3] showed that βG was a semigroup for each discrete group G, and any mathematician could then have spotted that βℕ was a subsemigroup of βℕ.) The question which now appears natural was explicitly raised by van Douwen[6] in 1978 (in spite of the recent publication date of his paper), namely, does ℕ* contain subspaces simultaneously algebraically isomorphic and homeomorphic to βℕ? Progress on this question was slight until Strauss [22] solved it in a spectacular fashion: the image of any continuous homomorphism from βℕ into ℕ* must be finite, and so the homomorphism cannot be injective. This dramatic advance is not the end of the story. It is still not known whether that image can contain more than one point. Indeed, what appears to be one of the most difficult questions about the algebraic structure of βℕ is whether it contains any non-trivial finite subgroups

1996 ◽  
Vol 11 (10) ◽  
pp. 1747-1761
Author(s):  
C.L. SOW ◽  
T.T. TRUONG

Using the representation of the quantum group SL q(2) by the Weyl operators of the canonical commutation relations in quantum mechanics, we construct and solve a new vertex model on a square lattice. Random variables on horizontal bonds are Ising variables, and those on the vertical bonds take half positive integer values. The vertex is subjected to a generalized form of the so-called “ice rule,” its property is studied in detail and its free energy calculated with the method of quantum inverse scattering. Remarkably, in analogy with the usual six-vertex model, there exists a “free-fermion” limit with a novel rich operator structure. The existing algebraic structure suggests a possible connection with a lattice neutral plasma of charges, via the fermion-boson correspondence.


Filomat ◽  
2019 ◽  
Vol 33 (9) ◽  
pp. 2747-2750
Author(s):  
Lubica Holá

It is shown that if a T2 topological space X contains a closed uncountable discrete subspace, then the spaces (?1 + 1)? and (?1 + 1)?1 embed into (CL(X),?F), the hyperspace of nonempty closed subsets of X equipped with the Fell topology. If (X, d) is a non-separable perfect topological space, then (?1 + 1)? and (?1 +1)?1 embed into (CL(X), ?w(d)), the hyperspace of nonempty closed subsets of X equipped with the Wijsman topology, giving a partial answer to the Question 3.4 in [2].


2021 ◽  
Vol 27_NS1 (1) ◽  
pp. 61-80
Author(s):  
Franco Barragán ◽  
Sergio Macías ◽  
Anahí Rojas

Let X be a topological space. For any positive integer n , we consider the n -fold symmetric product of X , ℱ n ( X ), consisting of all nonempty subsets of X with at most n points; and for a given function ƒ : X → X , we consider the induced functions ℱ n ( ƒ ): ℱ n ( X ) → ℱ n ( X ). Let M be one of the following classes of functions: exact, transitive, ℤ-transitive, ℤ + -transitive, mixing, weakly mixing, chaotic, turbulent, strongly transitive, totally transitive, orbit-transitive, strictly orbit-transitive, ω-transitive, minimal, I N, T T ++ , semi-open and irreducible. In this paper we study the relationship between the following statements: ƒ ∈ M and ℱ n ( ƒ ) ∈ M .


Author(s):  
Tim Button ◽  
Sean Walsh

Types are one of the cornerstones of contemporary model theory. Simply put, a type is the collection of formulas satisfied by an element of some elementary extension. The types can be organised in an algebraic structure known as a Lindenbaum algebra. But the contemporary study of types also treats them as the points of a certain kind of topological space. These spaces, called ‘Stone spaces’, illustrate the richness of moving back-and-forth between algebraic and topological perspectives. Further, one of the most central notions of contemporary model theory—namely stability—is simply a constraint on the cardinality of these spaces. We close the chapter by discussing a related algebra-topology ‘duality’ from metaphysics, concerning whether to treat propositions as sets of possible worlds or vice-versa. We show that suitable regimentations of these two rival metaphysical approaches are biinterpretable (in the sense of chapter 5), and discuss the philosophical significance of this rapprochement.


2001 ◽  
Vol 38 (1-4) ◽  
pp. 225-231
Author(s):  
Z. Szentmiklóssy ◽  
István Juhász ◽  
J. Gerlits

A topological space X is S -countably compact for a subbase S of X if for any infinite subset A ˆ X there is an S -accumulation point p 2 X of A, i.e. any member of S containing the point p contains infinitely many points of A. AspaceXis called subbase countably compact (in short: SCC) if there is a subbase S of X such that X is S -countably compact. We show that SCC is a productive property, any discrete space of size at least continuum is SCC, but SCC implies countable compactness for X if the Lindel¨ of-degree of X is SCC, but SCC implies countable compactness for X if the Lindel¨ of-degree of X


2020 ◽  
Vol 87 (3-4) ◽  
pp. 231
Author(s):  
Saroj Rani

In this paper, we establish the algebraic structure of all cyclic and negacyclic codes of length 8<em>p</em><sup>s</sup> over the chain ring Fp<sup>m</sup> + uFp<sup>m</sup> in terms of their generator polynomials, where u<sup>2</sup> = 0 and s is a positive integer and p is an odd prime. We also find out the number of codewords in each of these cyclic codes. Besides this, we determine duals of cyclic codes and list self-dual cyclic and negacyclic codes of length 8<em>p</em><sup>s</sup> over Fp<sup>m</sup> + uFp<sup>m</sup>. Also, we determine μ and -constacyclic codes of length 8<em>p</em><sup>s</sup> over Fp<sup>m</sup> + uFp<sup>m</sup>.


1979 ◽  
Vol 20 (1) ◽  
pp. 25-28 ◽  
Author(s):  
K. D. Magill

For algebraic terms which are not defined, one may consult [2]. The symbol S(X) denotes the semigroup, under composition, of all continuous selfmaps of the topological space X. When X is discrete, S(X) is simply the full transformation semigroup on the set X. It has long been known that Green's relations and ℐ coincide for [2, p. 52] and F. A. Cezus has shown in his doctoral dissertation [1, p. 34] that and ℐ also coincide for S(X) when X is the one-point compactification of the countably infinite discrete space. Our main purpose here is to point out the fact that among the 0-dimensional metric spaces, Cezus discovered the only nondiscrete space X with the property that and ℐ coincide on the semigroup S(X). Because of a result in a previous paper [6] by S. Subbiah and the author, this property (for 0-dimensional metric spaces) is in turn equivalent to the semigroup being regular. We gather all this together in the following


Author(s):  
Marta Bunge

The aim of this paper is to answer the following question. For a spatial groupoid G, i.e. for a groupoid in the category Sp of spaces (in the sense of [20]) in a topos , and continuous maps, the topos BG, of étale G-spaces, is called ‘the classifying topos of G’ by Moerdijk[22]. This terminology is suggested by the case of G a discrete group (in Sets), as then BG, the topos of G-sets, classifies principal G-bundles. This means that, for each topological space X, there is a bijection between isomorphism classes of principal G-bundles over X and isomorphism classes of geometric morphisms from Sh(X) to BG. The question is: what does BG classify, in terms of G, in the general case of a spatial groupoid G in a topos ?


2018 ◽  
Vol 14 (02) ◽  
pp. 301-311
Author(s):  
Paolo Leonetti ◽  
Andrea Marino

Let [Formula: see text] be a commutative ring, [Formula: see text] a multivariate polynomial, and [Formula: see text] a finite subgroup of the group of units of [Formula: see text] satisfying a certain constraint, which always holds if [Formula: see text] is a field. Then, we evaluate [Formula: see text], where the summation is taken over all pairwise distinct [Formula: see text]. In particular, let [Formula: see text] be a power of an odd prime, [Formula: see text] a positive integer coprime with [Formula: see text], and [Formula: see text] integers such that [Formula: see text] divides [Formula: see text] and [Formula: see text] does not divide [Formula: see text] for all non-empty proper subsets [Formula: see text]; then [Formula: see text] where the summation is taken over all pairwise distinct [Formula: see text]th residues [Formula: see text] modulo [Formula: see text] coprime with [Formula: see text].


Filomat ◽  
2013 ◽  
Vol 27 (4) ◽  
pp. 567-575 ◽  
Author(s):  
Murad Hussain ◽  
ud Khan ◽  
Cenap Özel

In this paper, we initiate the study of generalized topological groups. A generalized topological group has the algebraic structure of groups and the topological structure of a generalized topological space defined by A. Cs?sz?r [2] and they are joined together by the requirement that multiplication and inversion are G-continuous. Every topological group is a G-topological group whereas converse is not true in general. Quotients of generalized topological groups are defined and studied.


Sign in / Sign up

Export Citation Format

Share Document