Transmutation theory and rank for quantum braided groups

Author(s):  
Shahn Majid

AbstractLet f: H1 → H2be any pair of quasitriangular Hopf algebras over k with a Hopf algebra map f between them. We construct in this situation a quasitriangular Hopf algebra B(H1, f, H2) in the braided monoidal category of H1-modules. It consists in the same algebra as H2 with a modified comultiplication and has a quasitriangular structure given by the ratio of those of H1 and H2. This transmutation procedure trades a non-cocommutative Hopf algebra in the category of k-modules for a more cocommutative object in a more non-commutative category. As an application, every Hopf algebra containing the group algebra of ℤ2 becomes transmuted to a super-Hopf algebra.

2019 ◽  
Vol 21 (04) ◽  
pp. 1850045 ◽  
Author(s):  
Robert Laugwitz

We show that for dually paired bialgebras, every comodule algebra over one of the paired bialgebras gives a comodule algebra over their Drinfeld double via a crossed product construction. These constructions generalize to working with bialgebra objects in a braided monoidal category of modules over a quasitriangular Hopf algebra. Hence two ways to provide comodule algebras over the braided Drinfeld double (the double bosonization) are provided. Furthermore, a map of second Hopf algebra cohomology spaces is constructed. It takes a pair of 2-cocycles over dually paired Hopf algebras and produces a 2-cocycle over their Drinfeld double. This construction also has an analogue for braided Drinfeld doubles.


2002 ◽  
Vol 26 (2) ◽  
pp. 299-311 ◽  
Author(s):  
J. N. Alonso Alvarez ◽  
J. M. Fernández Vilaboa ◽  
R. González Rodriguez

2010 ◽  
Vol 09 (01) ◽  
pp. 11-15 ◽  
Author(s):  
DAIJIRO FUKUDA

This paper contributes to the classification of finite dimensional Hopf algebras. It is shown that every Hopf algebra of dimension 30 over an algebraically closed field of characteristic zero is semisimple and thus isomorphic to a group algebra or the dual of a group algebra.


Author(s):  
Lucio Centrone ◽  
Chia Zargeh

AbstractLet L be an n-dimensional null-filiform Leibniz algebra over a field K. We consider a finite dimensional cocommutative Hopf algebra or a Taft algebra H and we describe the H-actions on L. Moreover we provide the set of H-identities and the description of the Sn-module structure of the relatively free algebra of L.


1991 ◽  
Vol 02 (01) ◽  
pp. 41-66 ◽  
Author(s):  
GREG KUPERBERG

We establish a 3-manifold invariant for each finite-dimensional, involutory Hopf algebra. If the Hopf algebra is a group algebra G, the invariant counts homomorphisms from the fundamental group of the manifold to G. The invariant can be viewed as a state model on a Heegaard diagram or a triangulation of the manifold. The computation of the invariant involves tensor products and contractions of the structure tensors of the algebra. We show that every formal expression involving these tensors corresponds to a unique 3-manifold modulo a well-understood equivalence. This raises the possibility of an algorithm which can determine whether two given 3-manifolds are homeomorphic.


2014 ◽  
Vol 57 (2) ◽  
pp. 264-269
Author(s):  
Li Dai ◽  
Jingcheng Dong

AbstractLet p, q be prime numbers with p2 < q, n ∊ ℕ, and H a semisimple Hopf algebra of dimension pqn over an algebraically closed field of characteristic 0. This paper proves that H must possess one of the following two structures: (1) H is semisolvable; (2) H is a Radford biproduct R#kG, where kG is the group algebra of group G of order p and R is a semisimple Yetter–Drinfeld Hopf algebra in of dimension qn.


2010 ◽  
Vol 09 (02) ◽  
pp. 275-303 ◽  
Author(s):  
K. JANSSEN ◽  
J. VERCRUYSSE

We propose a categorical interpretation of multiplier Hopf algebras, in analogy to usual Hopf algebras and bialgebras. Since the introduction of multiplier Hopf algebras by Van Daele [Multiplier Hopf algebras, Trans. Amer. Math. Soc.342(2) (1994) 917–932] such a categorical interpretation has been missing. We show that a multiplier Hopf algebra can be understood as a coalgebra with antipode in a certain monoidal category of algebras. We show that a (possibly nonunital, idempotent, nondegenerate, k-projective) algebra over a commutative ring k is a multiplier bialgebra if and only if the category of its algebra extensions and both the categories of its left and right modules are monoidal and fit, together with the category of k-modules, into a diagram of strict monoidal forgetful functors.


Author(s):  
Nicolás Andruskiewitsch ◽  
Giovanna Carnovale ◽  
Gastón Andrés García

Abstract We show that all classes that are neither semisimple nor unipotent in finite simple Chevalley or Steinberg groups different from $$\mathbf {PSL}_n(q)$$ PSL n ( q ) collapse (i.e. are never the support of a finite-dimensional Nichols algebra). As a consequence, we prove that the only finite-dimensional pointed Hopf algebra whose group of group-like elements is $$\mathbf {PSp}_{2n}(q)$$ PSp 2 n ( q ) , $$\mathbf {P}{\varvec{\Omega }}^+_{4n}(q)$$ P Ω 4 n + ( q ) , $$\mathbf {P}{\varvec{\Omega }}^-_{4n}(q)$$ P Ω 4 n - ( q ) , $$^3D_4(q)$$ 3 D 4 ( q ) , $$E_7(q)$$ E 7 ( q ) , $$E_8(q)$$ E 8 ( q ) , $$F_4(q)$$ F 4 ( q ) , or $$G_2(q)$$ G 2 ( q ) with q even is the group algebra.


Author(s):  
Linlin Liu ◽  
Shuanhong Wang

The aim of this paper is to introduce and study Yetter–Drinfeld category over a weak monoidal Hom–Hopf algebra [Formula: see text]. We first show that the category [Formula: see text] of Yetter–Drinfeld modules over [Formula: see text] with a bijective antipode is a braided monoidal category. Secondly, we discuss some properties on the symmetries of the category [Formula: see text]. Finally, we prove that the representation category of triangular weak monoidal Hom–Hopf algebra is a symmetric braided monoidal subcategory of [Formula: see text]. Furthermore, a class of weak monoidal Hom–Yetter–Drinfeld modules are constructed by a quasitriangular weak monoidal Hom–Hopf algebra.


2007 ◽  
Vol 14 (04) ◽  
pp. 571-584 ◽  
Author(s):  
Jun Hu ◽  
Yinhuo Zhang

Let K be a field. Let H be a finite-dimensional K-Hopf algebra and D(H) be the Drinfel'd double of H. In this paper, we study Radford's induced module Hβ, where β is a group-like element in H∗. Using the commuting pair established in [7], we obtain an analogue of the class equation for [Formula: see text] when H is semisimple and cosemisimple. In case H is a finite group algebra or a factorizable semisimple cosemisimple Hopf algebra, we give an explicit decomposition of each Hβ into a direct sum of simple D(H)-modules.


Sign in / Sign up

Export Citation Format

Share Document