scholarly journals On the size of the maximum of incomplete Kloosterman sums

Author(s):  
DANTE BONOLIS

Abstract Let $t:{\mathbb F_p} \to C$ be a complex valued function on ${\mathbb F_p}$ . A classical problem in analytic number theory is bounding the maximum $$M(t): = \mathop {\max }\limits_{0 \le H < p} \left| {{1 \over {\sqrt p }}\sum\limits_{0 \le n < H} {t(n)} } \right|$$ of the absolute value of the incomplete sums $(1/\sqrt p )\sum\nolimits_{0 \le n < H} {t(n)} $ . In this very general context one of the most important results is the Pólya–Vinogradov bound $$M(t) \le {\left\| {\hat t} \right\|_\infty }\log 3p,$$ where $\hat t:{\mathbb F_p} \to \mathbb C$ is the normalized Fourier transform of t. In this paper we provide a lower bound for certain incomplete Kloosterman sums, namely we prove that for any $\varepsilon > 0$ there exists a large subset of $a \in \mathbb F_p^ \times $ such that for $${\rm{k}}{1_{a,1,p}}:x \mapsto e((ax + \bar x)/p)$$ we have $$M({\rm{k}}{1_{a,1,p}}) \ge \left( {{{1 - \varepsilon } \over {\sqrt 2 \pi }} + o(1)} \right)\log \log p,$$ as $p \to \infty $ . Finally, we prove a result on the growth of the moments of ${\{ M({\rm{k}}{1_{a,1,p}})\} _{a \in \mathbb F_p^ \times }}$ .

Author(s):  
J. KACZOROWSKI ◽  
A. PERELLI

A classical problem in analytic number theory is the distribution in short intervals of integers with a prescribed multiplicative structure, such as primes, almost-primes, k-free numbers and others. Recently, partly due to applications to cryptology, much attention has been received by the problem of the distribution in short intervals of integers without large prime factors, see Lenstra–Pila–Pomerance [3] and section 5 of the excellent survey by Hildebrand–Tenenbaum [1].In this paper we deal with the distribution in short intervals of numbers representable as a product of a prime and integers from a given set [Sscr ], defined in terms of cardinality properties. Our results can be regarded as an extension of the above quoted results, and we will provide a comparison with such results by a specialization of the set [Sscr ].


Author(s):  
Ankush Goswami ◽  
Venkata Raghu Tej Pantangi

AbstractRecently, Li (Int J Number Theory, 2020) obtained an asymptotic formula for a certain partial sum involving coefficients for the polynomial in the First Borwein conjecture. As a consequence, he showed the positivity of this sum. His result was based on a sieving principle discovered by himself and Wan (Sci China Math, 2010). In fact, Li points out in his paper that his method can be generalized to prove an asymptotic formula for a general partial sum involving coefficients for any prime $$p>3$$ p > 3 . In this work, we extend Li’s method to obtain asymptotic formula for several partial sums of coefficients of a very general polynomial. We find that in the special cases $$p=3, 5$$ p = 3 , 5 , the signs of these sums are consistent with the three famous Borwein conjectures. Similar sums have been studied earlier by Zaharescu (Ramanujan J, 2006) using a completely different method. We also improve on the error terms in the asymptotic formula for Li and Zaharescu. Using a recent result of Borwein (JNT 1993), we also obtain an asymptotic estimate for the maximum of the absolute value of these coefficients for primes $$p=2, 3, 5, 7, 11, 13$$ p = 2 , 3 , 5 , 7 , 11 , 13 and for $$p>15$$ p > 15 , we obtain a lower bound on the maximum absolute value of these coefficients for sufficiently large n.


2010 ◽  
Vol 60 (6) ◽  
Author(s):  
T. Todorova ◽  
D. Tolev

AbstractA classical problem in analytic number theory is to study the distribution of αp modulo 1, where α is irrational and p runs over the set of primes. We consider the subsequence generated by the primes p such that p+2 is an almost-prime (the existence of infinitely many such p is another topical result in prime number theory) and prove that its distribution has a similar property.


Author(s):  
Mohamed-Ahmed Boudref

Hankel transform (or Fourier-Bessel transform) is a fundamental tool in many areas of mathematics and engineering, including analysis, partial differential equations, probability, analytic number theory, data analysis, etc. In this article, we prove an analog of Titchmarsh's theorem for the Hankel transform of functions satisfying the Hankel-Lipschitz condition.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lung-Hui Chen

Abstract In this paper, we discuss how to partially determine the Fourier transform F ⁢ ( z ) = ∫ - 1 1 f ⁢ ( t ) ⁢ e i ⁢ z ⁢ t ⁢ 𝑑 t , z ∈ ℂ , F(z)=\int_{-1}^{1}f(t)e^{izt}\,dt,\quad z\in\mathbb{C}, given the data | F ⁢ ( z ) | {\lvert F(z)\rvert} or arg ⁡ F ⁢ ( z ) {\arg F(z)} for z ∈ ℝ {z\in\mathbb{R}} . Initially, we assume [ - 1 , 1 ] {[-1,1]} to be the convex hull of the support of the signal f. We start with reviewing the computation of the indicator function and indicator diagram of a finite-typed complex-valued entire function, and then connect to the spectral invariant of F ⁢ ( z ) {F(z)} . Then we focus to derive the unimodular part of the entire function up to certain non-uniqueness. We elaborate on the translation of the signal including the non-uniqueness associates of the Fourier transform. We show that the phase retrieval and magnitude retrieval are conjugate problems in the scattering theory of waves.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2294
Author(s):  
Hari Mohan Srivastava

Often referred to as special functions or mathematical functions, the origin of many members of the remarkably vast family of higher transcendental functions can be traced back to such widespread areas as (for example) mathematical physics, analytic number theory and applied mathematical sciences. Here, in this survey-cum-expository review article, we aim at presenting a brief introductory overview and survey of some of the recent developments in the theory of several extensively studied higher transcendental functions and their potential applications. For further reading and researching by those who are interested in pursuing this subject, we have chosen to provide references to various useful monographs and textbooks on the theory and applications of higher transcendental functions. Some operators of fractional calculus, which are associated with higher transcendental functions, together with their applications, have also been considered. Many of the higher transcendental functions, especially those of the hypergeometric type, which we have investigated in this survey-cum-expository review article, are known to display a kind of symmetry in the sense that they remain invariant when the order of the numerator parameters or when the order of the denominator parameters is arbitrarily changed.


Sign in / Sign up

Export Citation Format

Share Document