Weighted inequalities for Cesàro maximal operators in Orlicz spaces

2005 ◽  
Vol 135 (6) ◽  
pp. 1287-1308 ◽  
Author(s):  
Pedro Ortega Salvador ◽  
Consuelo Ramírez Torreblanca

Let 0 < α ≤ 1 and let M+α be the Cesàro maximal operator of order α defined by In this work we characterize the pairs of measurable, positive and locally integrable functions (u, v) for which there exists a constant C > 0 such that the inequality holds for all λ > 0 and every f in the Orlicz space LΦ(v). We also characterize the measurable, positive and locally integrable functions w such that the integral inequality holds for every f ∈ LΦ(w). The discrete versions of this results allow us, by techniques of transference, to prove weighted inequalities for the Cesàro maximal ergodic operator associated with an invertible measurable transformation, T, which preserves the measure.Finally, we give sufficient conditions on w for the convergence of the sequence of Cesàro-α ergodic averages for all functions in the weighted Orlicz space LΦ(w).

1993 ◽  
Vol 45 (3) ◽  
pp. 449-469 ◽  
Author(s):  
M. A. Akcoglu ◽  
Y. Déniel

AbstractLet ℝ denote the real line. Let {Tt}tєℝ be a measure preserving ergodic flow on a non atomic finite measure space (X, ℱ, μ). A nonnegative function φ on ℝ is called a weight function if ∫ℝ φ(t)dt = 1. Consider the weighted ergodic averagesof a function f X —> ℝ, where {θk} is a sequence of weight functions. Some sufficient and some necessary and sufficient conditions are given for the a.e. convergence of Akf, in particular for a special case in whichwhere φ is a fixed weight function and {(ak, rk)} is a sequence of pairs of real numbers such that rk > 0 for all k. These conditions are obtained by a combination of the methods of Bellow-Jones-Rosenblatt, developed to deal with moving ergodic averages, and the methods of Broise-Déniel-Derriennic, developed to deal with unbounded weight functions.


1982 ◽  
Vol 34 (6) ◽  
pp. 1303-1318 ◽  
Author(s):  
John C. Kieffer ◽  
Maurice Rahe

1. Introduction. Let be a probability space with standard. Let T be a bimeasurable one-to-one map of Ω onto itself. Let U: Ω → Ω be another measurable transformation whose orbits are contained in the T-orbits; that is,where Z denotes the set of integers. (This is equivalent to saying that there is a measurable mapping L: Ω → Z such that U(ω) = TL(ω)(ω), ω ∈ Ω.) Such pairs (T, U) arise quite naturally in ergodic theory and information theory. (For example, in ergodic theory, one can see such pairs in the study of the full group of a transformation [1]; in information theory, such a pair can be associated with the input and output of a variable-length source encoder [2] [3].) Neveu [4] obtained necessary and sufficient conditions for U to be measure-preserving if T is measure-preserving. However, if U fails to be measure-preserving, U might still possess many of the features of measure-preserving transformations.


1995 ◽  
Vol 47 (4) ◽  
pp. 852-876
Author(s):  
David I. McIntosh

AbstractLet ℝ+ denote the non-negative half of the real line, and let λ denote Lebesgue measure on the Borel sets of ℝn. A function φ: ℝn → ℝ+ is called a weight function if ʃℝn φ dλ = 1. Let (X, ℱ, μ) be a non-atomic, finite measure space, let ƒ: X → ℝ+, and suppose { Tν}ν∊ℝn is an ergodic, aperiodic ℝn-flow on X. We consider the weighted ergodic averages where is a sequence of weight functions. Sufficient as well as necessary and sufficient conditions for the pointwise, almost-everywhere convergence of are developed for a particular class of weight functions φk. Specifically, let {τk: ℝn → ℝn} be a sequence of measurable, non-singular maps with measurable, non-singular inverses such that the Radon-Nikodym derivatives dλ oτk /dλ and dλ oτk-1 / dλ are L∞ (ℝn), and such that τk and τ-1 map bounded sets to bounded sets. We examine convergence for the sequence where θk is an a.e.-convergent sequence of weight functions which are dominated by a fixed L1(ℝn) function with bounded support.


1977 ◽  
Vol 18 (1) ◽  
pp. 87-91 ◽  
Author(s):  
J. Diestel

Let (Ω,Σ,μ) be a finite measure space and X a Banach space. Denote by L1 (μ,X) the Banach space of (equivalence classes of) μ-strongly measurable X-valued Bochner integrable functions f:Ω→X normed byThe problem of characterizing the relatively weakly compact subsets of L1(Ω, X) remains open. It is known that for a bounded subset of L1(μ, X) to be relatively weakly compact it is necessary that the set be uniformly integrable; recall that K ⊆ L1, (μ, X) is uniformly integrable whenever given ε >0 there exists δ > 0 such that if μ (E) ≦ δ then ∫E∥f∥ dμ ≦ δ, for all f ∈ K. S. Chatterji has noted that in case X is reflexive this condition is also sufficient [4]. At present unless one assumes that both X and X* have the Radon-Nikodym Property (see [1]), a rather severe restriction which, for purposes of potential applicability, is tantamount to assuming reflexivity, no good sufficient conditions for weak compactness in L1(μ, X) exist. This note puts forth such sufficient conditions; the basic tool is the recent factorization method of W. J. Davis, T. Figiel, W. B. Johnson and A. Pelczynski [3].


2010 ◽  
Vol 53 (2) ◽  
pp. 327-339
Author(s):  
Dah-Chin Luor

AbstractWe establish sufficient conditions on the weight functions u and v for the validity of the multidimensional weighted inequalitywhere 0 < p, q < ∞, Φ is a logarithmically convex function, and Tk is an integral operator over star-shaped regions. The condition is also necessary for the exponential integral inequality. Moreover, the estimation of C is given and we apply the obtained results to generalize some multidimensional Levin–Cochran-Lee type inequalities.


1993 ◽  
Vol 123 (6) ◽  
pp. 1109-1118
Author(s):  
Pedro Ortega Salvador ◽  
Luboš Pick

SynopsisLet be the one-sided maximal operator and let Ф be a convex non-decreasing function on (0, ∞), Ф(0) = 0. We present necessary and sufficient conditions on a couple of weight functions (σ, ϱ) such that the integral inqualities of weak typeand of extra-weak typehold. Our proofs do not refer to the theory of Orlicz spaces.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Bing He ◽  
Yong Hong ◽  
Zhen Li

AbstractFor the Hilbert type multiple integral inequality $$ \int _{\mathbb{R}_{+}^{n}} \int _{\mathbb{R}_{+}^{m}} K\bigl( \Vert x \Vert _{m,\rho }, \Vert y \Vert _{n, \rho }\bigr) f(x)g(y) \,\mathrm{d} x \,\mathrm{d} y \leq M \Vert f \Vert _{p, \alpha } \Vert g \Vert _{q, \beta } $$ ∫ R + n ∫ R + m K ( ∥ x ∥ m , ρ , ∥ y ∥ n , ρ ) f ( x ) g ( y ) d x d y ≤ M ∥ f ∥ p , α ∥ g ∥ q , β with a nonhomogeneous kernel $K(\|x\|_{m, \rho }, \|y\|_{n, \rho })=G(\|x\|^{\lambda _{1}}_{m, \rho }/ \|y\|^{\lambda _{2}}_{n, \rho })$ K ( ∥ x ∥ m , ρ , ∥ y ∥ n , ρ ) = G ( ∥ x ∥ m , ρ λ 1 / ∥ y ∥ n , ρ λ 2 ) ($\lambda _{1}\lambda _{2}> 0$ λ 1 λ 2 > 0 ), in this paper, by using the weight function method, necessary and sufficient conditions that parameters p, q, $\lambda _{1}$ λ 1 , $\lambda _{2}$ λ 2 , α, β, m, and n should satisfy to make the inequality hold for some constant M are established, and the expression formula of the best constant factor is also obtained. Finally, their applications in operator boundedness and operator norm are also considered, and the norms of several integral operators are discussed.


2015 ◽  
Vol 36 (7) ◽  
pp. 2107-2120
Author(s):  
ZOLTÁN BUCZOLICH ◽  
GABRIELLA KESZTHELYI

Suppose that $G$ is a compact Abelian topological group, $m$ is the Haar measure on $G$ and $f:G\rightarrow \mathbb{R}$ is a measurable function. Given $(n_{k})$, a strictly monotone increasing sequence of integers, we consider the non-conventional ergodic/Birkhoff averages $$\begin{eqnarray}M_{N}^{\unicode[STIX]{x1D6FC}}f(x)=\frac{1}{N+1}\mathop{\sum }_{k=0}^{N}f(x+n_{k}\unicode[STIX]{x1D6FC}).\end{eqnarray}$$ The $f$-rotation set is $$\begin{eqnarray}\unicode[STIX]{x1D6E4}_{f}=\{\unicode[STIX]{x1D6FC}\in G:M_{N}^{\unicode[STIX]{x1D6FC}}f(x)\text{ converges for }m\text{ almost every }x\text{ as }N\rightarrow \infty \}.\end{eqnarray}$$We prove that if $G$ is a compact locally connected Abelian group and $f:G\rightarrow \mathbb{R}$ is a measurable function then from $m(\unicode[STIX]{x1D6E4}_{f})>0$ it follows that $f\in L^{1}(G)$. A similar result is established for ordinary Birkhoff averages if $G=Z_{p}$, the group of $p$-adic integers. However, if the dual group, $\widehat{G}$, contains ‘infinitely many multiple torsion’ then such results do not hold if one considers non-conventional Birkhoff averages along ergodic sequences. What really matters in our results is the boundedness of the tail, $f(x+n_{k}\unicode[STIX]{x1D6FC})/k$, $k=1,\ldots ,$ for almost every $x$ for many $\unicode[STIX]{x1D6FC}$; hence, some of our theorems are stated by using instead of $\unicode[STIX]{x1D6E4}_{f}$ slightly larger sets, denoted by $\unicode[STIX]{x1D6E4}_{f,b}$.


Sign in / Sign up

Export Citation Format

Share Document