Ergodic Averages for Weight Functions Moved by Non-Linear Transformations on ℝn

1995 ◽  
Vol 47 (4) ◽  
pp. 852-876
Author(s):  
David I. McIntosh

AbstractLet ℝ+ denote the non-negative half of the real line, and let λ denote Lebesgue measure on the Borel sets of ℝn. A function φ: ℝn → ℝ+ is called a weight function if ʃℝn φ dλ = 1. Let (X, ℱ, μ) be a non-atomic, finite measure space, let ƒ: X → ℝ+, and suppose { Tν}ν∊ℝn is an ergodic, aperiodic ℝn-flow on X. We consider the weighted ergodic averages where is a sequence of weight functions. Sufficient as well as necessary and sufficient conditions for the pointwise, almost-everywhere convergence of are developed for a particular class of weight functions φk. Specifically, let {τk: ℝn → ℝn} be a sequence of measurable, non-singular maps with measurable, non-singular inverses such that the Radon-Nikodym derivatives dλ oτk /dλ and dλ oτk-1 / dλ are L∞ (ℝn), and such that τk and τ-1 map bounded sets to bounded sets. We examine convergence for the sequence where θk is an a.e.-convergent sequence of weight functions which are dominated by a fixed L1(ℝn) function with bounded support.

1993 ◽  
Vol 45 (3) ◽  
pp. 449-469 ◽  
Author(s):  
M. A. Akcoglu ◽  
Y. Déniel

AbstractLet ℝ denote the real line. Let {Tt}tєℝ be a measure preserving ergodic flow on a non atomic finite measure space (X, ℱ, μ). A nonnegative function φ on ℝ is called a weight function if ∫ℝ φ(t)dt = 1. Consider the weighted ergodic averagesof a function f X —> ℝ, where {θk} is a sequence of weight functions. Some sufficient and some necessary and sufficient conditions are given for the a.e. convergence of Akf, in particular for a special case in whichwhere φ is a fixed weight function and {(ak, rk)} is a sequence of pairs of real numbers such that rk > 0 for all k. These conditions are obtained by a combination of the methods of Bellow-Jones-Rosenblatt, developed to deal with moving ergodic averages, and the methods of Broise-Déniel-Derriennic, developed to deal with unbounded weight functions.


1988 ◽  
Vol 104 (3) ◽  
pp. 561-574 ◽  
Author(s):  
Gunnar A. Brosamler

The purpose of this paper is the proof of an almost everywhere version of the classical central limit theorem (CLT). As is well known, the latter states that for IID random variables Y1, Y2, … on a probability space (Ω, , P) with we have weak convergence of the distributions of to the standard normal distribution on ℝ. We recall that weak convergence of finite measures μn on a metric space S to a finite measure μ on S is defined to mean thatfor all bounded, continuous real functions on S. Equivalently, one may require the validity of (1·1) only for bounded, uniformly continuous real functions, or even for all bounded measurable real functions which are μ-a.e. continuous.


Author(s):  
Zhanyuan Hou

Sufficient conditions are given for an autonomous differential system to have a single point global attractor (repeller) with f continuously differentiable almost everywhere. These results incorporate those of Hartman and Olech as a special case even when the condition f ∈ C1(D, ℝN) is fully met. Moreover, these criteria are simplified for a class of region-wise linear systems in ℝN.


1990 ◽  
Vol 10 (1) ◽  
pp. 141-149
Author(s):  
F. J. Martín-Reyes ◽  
A. De La Torre

AbstractLet (X, ν) be a finite measure space and let T: X → X be a measurable transformation. In this paper we prove that the averages converge a.e. for every f in Lp(dν), 1 < p < ∞, if and only if there exists a measure γ equivalent to ν such that the averages apply uniformly Lp(dν) into weak-Lp(dγ). As a corollary, we get that uniform boundedness of the averages in Lp(dν) implies a.e. convergence of the averages (a result recently obtained by Assani). In order to do this, we first study measures v equivalent to a finite invariant measure μ, and we prove that supn≥0An(dν/dμ)−1/(p−1) a.e. is a necessary and sufficient condition for the averages to converge a.e. for every f in Lp(dν).


1962 ◽  
Vol 58 (2) ◽  
pp. 326-337 ◽  
Author(s):  
Ann F. S. Mitchell

Let be, for a set of n real continuous parameters the probability density function of a random variable x with respect to a σ-finite measure μ on a σ-algebra of subsets of the sample space . If x; is a continuous random variable, μ will be Lebesgue measure on the Borel sets of a Euclidean sample space and, if x is discrete, μ will be counting measure on the class of all sets of a countable sample space. The parameters αi are said to be orthogonal (Jeffreys (3), pp. 158,184) if .


1980 ◽  
Vol 32 (4) ◽  
pp. 880-884
Author(s):  
James H. Olsen

Let (X, F,) be a sigma-finite measure space. In what follows we assume p fixed, 1 < p < ∞ . Let T be a contraction of Lp(X, F, μ) (‖T‖,p ≦ 1). If ƒ ≧ 0 implies Tƒ ≧ 0 we will say that T is positive. In this paper we prove that if is a uniform sequence (see Section 2 for definition) and T is a positive contraction of Lp, thenexists and is finite almost everywhere for every ƒ ∊ Lp(X, F, μ).


1967 ◽  
Vol 19 ◽  
pp. 757-763 ◽  
Author(s):  
Norman Y. Luther

Following (2) we say that a measure μ on a ring is semifinite ifClearly every σ-finite measure is semifinite, but the converse fails.In § 1 we present several reformulations of semifiniteness (Theorem 2), and characterize those semifinite measures μ on a ring that possess unique extensions to the σ-ring generated by (Theorem 3). Theorem 3 extends a classical result for σ-finite measures (3, 13.A). Then, in § 2, we apply the results of § 1 to the study of product measures; in the process, we compare the “semifinite product measure” (1; 2, pp. 127ff.) with the product measure described in (4, pp. 229ff.), finding necessary and sufficient conditions for their equality; see Theorem 6 and, in relation to it, Theorem 7.


1980 ◽  
Vol 23 (1) ◽  
pp. 115-116 ◽  
Author(s):  
James H. Olsen

Let (X, I, μ) be a σ-finite measure space and let T take Lp to Lp, p fixed, 1<p<∞,‖t‖p≤1. We shall say that the individual ergodic theorem holds for T if for any uniform sequence K1, k2,… (for the definition, see [2]) and for any f∊LP(X), the limitexists and is finite almost everywhere.


1977 ◽  
Vol 18 (1) ◽  
pp. 87-91 ◽  
Author(s):  
J. Diestel

Let (Ω,Σ,μ) be a finite measure space and X a Banach space. Denote by L1 (μ,X) the Banach space of (equivalence classes of) μ-strongly measurable X-valued Bochner integrable functions f:Ω→X normed byThe problem of characterizing the relatively weakly compact subsets of L1(Ω, X) remains open. It is known that for a bounded subset of L1(μ, X) to be relatively weakly compact it is necessary that the set be uniformly integrable; recall that K ⊆ L1, (μ, X) is uniformly integrable whenever given ε >0 there exists δ > 0 such that if μ (E) ≦ δ then ∫E∥f∥ dμ ≦ δ, for all f ∈ K. S. Chatterji has noted that in case X is reflexive this condition is also sufficient [4]. At present unless one assumes that both X and X* have the Radon-Nikodym Property (see [1]), a rather severe restriction which, for purposes of potential applicability, is tantamount to assuming reflexivity, no good sufficient conditions for weak compactness in L1(μ, X) exist. This note puts forth such sufficient conditions; the basic tool is the recent factorization method of W. J. Davis, T. Figiel, W. B. Johnson and A. Pelczynski [3].


2010 ◽  
Vol 53 (2) ◽  
pp. 327-339
Author(s):  
Dah-Chin Luor

AbstractWe establish sufficient conditions on the weight functions u and v for the validity of the multidimensional weighted inequalitywhere 0 < p, q < ∞, Φ is a logarithmically convex function, and Tk is an integral operator over star-shaped regions. The condition is also necessary for the exponential integral inequality. Moreover, the estimation of C is given and we apply the obtained results to generalize some multidimensional Levin–Cochran-Lee type inequalities.


Sign in / Sign up

Export Citation Format

Share Document