Regularly solvable extensions of non-self-adjoint ordinary differential operators

Author(s):  
W. D. Evans

SynopsisLetL0,M0be closed densely defined linear operators in a Hilbert spaceHwhich form an adjoint pair, i.e.. In this paper, we study closed operatorsSwhich satisfyand are regularly solvable in the sense of Višik. The abstract results obtained are applied to operators generated by second-order linear differential expressions in a weighted spaceL2(a, b; w).

Author(s):  
Ian Knowles

SynopsisThis paper is concerned with finding upper bounds on the set of eigenvalues of self-adjoint differential operators generated in the Hilbert space L2[0, ∞) by the differential expressionon [0,∞), together with a real homogeneous boundary condition at t = 0.


1967 ◽  
Vol 19 ◽  
pp. 571-582 ◽  
Author(s):  
Fred Brauer

There are several ways to approach the eigenfunction expansion problem for ordinary differential operators via the spectral theorem for self-ad joint linear operators in Hilbert space. One can examine the resolvent, which requires a detailed study of the Green's function (4, 5, 7), or one can use the spectral theorem for unbounded operators (2, 3, 9). Since the eigenf unction expansion theorem also requires some multiplicity theory, unless one is prepared to use a rather powerful form of the spectral theorem for unbounded operators, as in (2, 9), the proof requires a good deal of work in addition to the spectral theorem.


1975 ◽  
Vol 27 (1) ◽  
pp. 138-145 ◽  
Author(s):  
Roger T. Lewis

Define the self-adjoint operatorwhere r(x) > 0 on (0, ∞) and q and p are real-valued. The coefficient q is assumed to be differentiate on (0, ∞) and r is assumed to be twice differentia t e on (0, ∞).The oscillatory behavior of L4 as well as the general even order operator has been considered by Leigh ton and Nehari [5], Glazman [2], Reid [7], Hinton [3], Barrett [1], Hunt and Namb∞diri [4], Schneider [8], and Lewis [6].


1958 ◽  
Vol 10 ◽  
pp. 431-446 ◽  
Author(s):  
Fred Brauer

Let L and M be linear ordinary differential operators defined on an interval I, not necessarily bounded, of the real line. We wish to consider the expansion of arbitrary functions in eigenfunctions of the differential equation Lu = λMu on I. The case where M is the identity operator and L has a self-adjoint realization as an operator in the Hilbert space L 2(I) has been treated in various ways by several authors; an extensive bibliography may be found in (4) or (8).


1987 ◽  
Vol 39 (4) ◽  
pp. 880-892 ◽  
Author(s):  
Hari Bercovici

Kaplansky proposed in [7] three problems with which to test the adequacy of a proposed structure theory of infinite abelian groups. These problems can be rephrased as test problems for a structure theory of operators on Hilbert space. Thus, R. Kadison and I. Singer answered in [6] these test problems for the unitary equivalence of operators. We propose here a study of these problems for quasisimilarity of operators on Hilbert space. We recall first that two (bounded, linear) operators T and T′ acting on the Hilbert spaces and , are said to be quasisimilar if there exist bounded operators and with densely defined inverses, satisfying the relations T′X = XT and TY = YT′. The fact that T and T′ are quasisimilar is indicated by T ∼ T′. The problems mentioned above can now be formulated as follows.


Sign in / Sign up

Export Citation Format

Share Document