scholarly journals Axonal Damage in Multiple Sclerosis Patients with High versus Low Expanded Disability Status Scale Score

Author(s):  
Steven D. Brass ◽  
Sridar Narayanan ◽  
Jack P. Antel ◽  
Yves Lapierre ◽  
Louis Collins ◽  
...  

AbstractBackground:The pathophysiological basis for differences in disability in patients with multiple sclerosis is unclear.Methods:We used magnetic resonance imaging to examine whether differences in disability in cohorts of multiple sclerosis patients with similar T2-weighted lesion volume and disease duration were associated with a more destructive disease process in the more disabled patients.Results:The benign and severely disabled groups had similar brain atrophy metrics and similar decreases of the neuronal marker, N-acetylaspartate, in the normal appearing white matter of the cerebrum on magnetic resonance spectroscopy examination in vivo. The severely disabled cohort had more spinal cord atrophy.Conclusion:The dissociation of spinal cord atrophy and cerebral atrophy between these two groups suggests that the difference between the more benign and more disabled groups cannot be explained by a more aggressive pathological process that is affecting the entire neuroaxis in a homogeneous fashion.

1997 ◽  
Vol 3 (4) ◽  
pp. 231-237 ◽  
Author(s):  
WD Rooney ◽  
DE Goodkin ◽  
N. Schuff ◽  
DJ Meyerhoff ◽  
D. Norman ◽  
...  

The primary goal of this study was to determine if differences in proton magnetic resonance spectroscopy signals exist between normal appearing white matter (NAWM) of multiple sclerosis (MS) patients and white matter of control subjects. Water suppressed proton magnetic resonance spectroscopic imaging was used to determine the signal intensities of N-acetylated moieties (NA, predominantly N-acetylaspartate (NAA) the putative neuronal marker), creatine and phosphocreatine (Cr), and cholines (Ch) in 19 MS patients (15 relapsing-remitting and four secondary progressive) and 19 age matched control subjects. NA/Cr was significantly reduced (P < 0.00 1) in MS NAWM (1.8 ± 0.2; x ± s.d.) distant from MRI detected lesion areas compared to white matter of control subjects (2.1 ± 0.2). This reduction was due to an increase in Cr from 0.39 ± 0.04 (arbitrary units) in controls to 0.45 ± 0.05 in MS patients. There was no significant change in NA or Ch in MS NAWM compared to controls. NA/ Cr, distant from MRI lesion, was negatively correlated with total brain lesion volume as measured from T2-weighted MRI. We interpret the reduced NA/Cr in MS NAWM to indicate diffuse microscopic disease.


1992 ◽  
Vol 49 (2) ◽  
pp. 161-165 ◽  
Author(s):  
J. M. Minderhoud ◽  
E. L. Mooyaart ◽  
R. L. Kamman ◽  
A. W. Teelken ◽  
M. C. Hoogstraten ◽  
...  

Brain ◽  
2020 ◽  
Author(s):  
Ermelinda De Meo ◽  
Loredana Storelli ◽  
Lucia Moiola ◽  
Angelo Ghezzi ◽  
Pierangelo Veggiotti ◽  
...  

Abstract The thalamus represents one of the first structures affected by neurodegenerative processes in multiple sclerosis. A greater thalamic volume reduction over time, on its CSF side, has been described in paediatric multiple sclerosis patients. However, its determinants and the underlying pathological changes, likely occurring before this phenomenon becomes measurable, have never been explored. Using a multiparametric magnetic resonance approach, we quantified, in vivo, the different processes that can involve the thalamus in terms of focal lesions, microstructural damage and atrophy in paediatric multiple sclerosis patients and their distribution according to the distance from CSF/thalamus interface and thalamus/white matter interface. In 70 paediatric multiple sclerosis patients and 26 age- and sex-matched healthy controls, we tested for differences in thalamic volume and quantitative MRI metrics—including fractional anisotropy, mean diffusivity and T1/T2-weighted ratio—in the whole thalamus and in thalamic white matter, globally and within concentric bands originating from CSF/thalamus interface. In paediatric multiple sclerosis patients, the relationship of thalamic abnormalities with cortical thickness and white matter lesions was also investigated. Compared to healthy controls, patients had significantly increased fractional anisotropy in whole thalamus (f2 = 0.145; P = 0.03), reduced fractional anisotropy (f2 = 0.219; P = 0.006) and increased mean diffusivity (f2 = 0.178; P = 0.009) in thalamic white matter and a trend towards a reduced thalamic volume (f2 = 0.027; P = 0.058). By segmenting the whole thalamus and thalamic white matter into concentric bands, in paediatric multiple sclerosis we detected significant fractional anisotropy abnormalities in bands nearest to CSF (f2 = 0.208; P = 0.002) and in those closest to white matter (f2 range = 0.183–0.369; P range = 0.010–0.046), while we found significant mean diffusivity (f2 range = 0.101–0.369; P range = 0.018–0.042) and T1/T2-weighted ratio (f2 = 0.773; P = 0.001) abnormalities in thalamic bands closest to CSF. The increase in fractional anisotropy and decrease in mean diffusivity detected at the CSF/thalamus interface correlated with cortical thickness reduction (r range = −0.27–0.34; P range = 0.004–0.028), whereas the increase in fractional anisotropy detected at the thalamus/white matter interface correlated with white matter lesion volumes (r range = 0.24–0.27; P range = 0.006–0.050). Globally, our results support the hypothesis of heterogeneous pathological processes, including retrograde degeneration from white matter lesions and CSF-mediated damage, leading to thalamic microstructural abnormalities, likely preceding macroscopic tissue loss. Assessing thalamic microstructural changes using a multiparametric magnetic resonance approach may represent a target to monitor the efficacy of neuroprotective strategies early in the disease course.


2000 ◽  
Vol 42 (7) ◽  
pp. 515-517 ◽  
Author(s):  
B. Gómez-Ansón ◽  
D. G. MacManus ◽  
G. J. M. Parker ◽  
C. A. Davie ◽  
G. J. Barker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document