Omega Navigation in the Shadow of Antarctica

1989 ◽  
Vol 42 (2) ◽  
pp. 236-247
Author(s):  
R. Barr ◽  
K. B. Young

1. INTRODUCTION. Very-low-frequency radio waves were used to implement the Omega navigation system because of their low attenuation (2–4 dB/1000 km) when propagating globally in the waveguide formed between the Earth and the ionosphere. However, it became apparent in the early seventies, throughout the period when the majority of the stations of the Omega network were commissioned, that VLF signals propagating over permafrost or glacial ice could suffer anomalously large attenuations, of greater than 20 dB/1000 km, especially during the daytime. In the Northern Hemisphere problems have arisen with the heavy attenuation of Omega signals propagating over the Greenland ice sheet. In particular a very bad region for Omega coverage occurs around Winnipeg in Canada (the ‘Winnipeg Hole’). In this area Omega North Dakota suffers from ‘near field’ effects, Omega Liberia is contaminated by trans-equatorial modal effects and Omega Norway is removed by the attenuation of its signals when crossing the Greenland ice-cap. There have even been discussions on the feasibility of constructing extra VLF transmitters in Canada to alleviate this problem.

2020 ◽  
Author(s):  
Victor U. J. Nwankwo ◽  
Jean-Pierre Raulin ◽  
Dra. Emilia Correia ◽  
William F. Denig ◽  
Olanike Akinola ◽  
...  

2015 ◽  
Vol 11 (A29B) ◽  
pp. 367-369
Author(s):  
Lawrence Teitelbaum ◽  
Walid Majid ◽  
Manuel M. Franco ◽  
Daniel J. Hoppe ◽  
Shinji Horiuchi ◽  
...  

AbstractMillisecond pulsars (MSPs) are a class of radio pulsars with extremely stable rotation. Their excellent timing stability can be used to study a wide variety of astrophysical phenomena. In particular, a large sample of these pulsars can be used to detect low-frequency gravitational waves. We have developed a precision pulsar timing backend for the NASA Deep Space Network (DSN), which will allow the use of short gaps in tracking schedules to time pulses from an ensemble of MSPs. The DSN operates clusters of large dish antennas (up to 70-m in diameter), located roughly equidistant around the Earth, for communication and tracking of deep-space spacecraft. The backend system will be capable of removing entirely the dispersive effects of propagation of radio waves through the interstellar medium in real-time. We will describe our development work, initial results, and prospects for future observations over the next few years.


2020 ◽  
Vol 38 (1) ◽  
pp. 207-230
Author(s):  
Yuriy Rapoport ◽  
Vladimir Grimalsky ◽  
Viktor Fedun ◽  
Oleksiy Agapitov ◽  
John Bonnell ◽  
...  

Abstract. The modeling of very low-frequency (VLF) electromagnetic (EM) beam propagation in the Earth–ionosphere waveguide (WGEI) is considered. A new tensor impedance method for modeling the propagation of electromagnetic beams in a multi-layered and inhomogeneous waveguide is presented. The waveguide is assumed to possess the gyrotropy and inhomogeneity with a thick cover layer placed above the waveguide. The influence of geomagnetic field inclination and carrier beam frequency on the characteristics of the polarization transformation in the Earth–ionosphere waveguide is determined. The new method for modeling the propagation of electromagnetic beams allows us to study the (i) propagation of the very low-frequency modes in the Earth–ionosphere waveguide and, in perspective, their excitation by the typical Earth–ionosphere waveguide sources, such as radio wave transmitters and lightning discharges, and (ii) leakage of Earth–ionosphere waveguide waves into the upper ionosphere and magnetosphere. The proposed approach can be applied to the variety of problems related to the analysis of the propagation of electromagnetic waves in layered gyrotropic and anisotropic active media in a wide frequency range, e.g., from the Earth–ionosphere waveguide to the optical waveband, for artificial signal propagation such as metamaterial microwave or optical waveguides.


Science ◽  
1963 ◽  
Vol 142 (3591) ◽  
pp. 508-510
Author(s):  
D. D. Crombie

2017 ◽  
Vol 122 (7) ◽  
pp. 7698-7712 ◽  
Author(s):  
Sudipta Sasmal ◽  
Tamal Basak ◽  
Suman Chakraborty ◽  
Sourav Palit ◽  
Sandip K. Chakrabarti

Author(s):  
R.N. Bracewell ◽  
K.G. Budden ◽  
J.A. Ratcliffe ◽  
T.W. Straker ◽  
K. Weekes

Sign in / Sign up

Export Citation Format

Share Document