Waypoint Navigation of Small-Scale UAV incorporating Dynamic Soaring

2010 ◽  
Vol 64 (1) ◽  
pp. 29-44 ◽  
Author(s):  
O. K. Ariff ◽  
T. H. Go

The latest attempts at improving small scale autonomously guided Uninhabited Aerial Vehicles (UAVs) have concentrated around the increase of range and speed. One of these ways is to incorporate dynamic slope soaring manoeuvres as part of the flight path. This is in contrast to most conventional path-planning algorithms where waypoint guidance is merged with terrain avoidance or contour following capability. Additionally, current trajectory optimization techniques are iterative and so have a considerable computational load. The proposed algorithm is based on Dubin's curves, and is therefore optimal by definition. Being non-iterative, it is comparatively a more efficient algorithm. Hence, a key advantage of the proposed technique is that the desired trajectory is generated quickly in real time with minimum computational load while satisfying the spatial constraints of dynamic slope soaring.

2012 ◽  
Vol 225 ◽  
pp. 403-408
Author(s):  
Omar Kassim Ariff ◽  
Tiauw Hiong Go ◽  
Surjatin Wiriadidjaja ◽  
Amzari Zhahir

An area under consideration of improving the mission effectiveness of small-scale, autonomous Uninhabited Aerial Vehicles (UAVs) has been the increase of speed. One method is to incorporate dynamic slope soaring maneuvers as part of the flight path during waypoint navigation. Research into autonomous dynamic soaring capability in small-scale UAVs began with selecting a suitable maneuver heuristic. The output from the heuristic model has then been used to formulate a non-iterative trajectory forming algorithm. By utilizing Dubin’s curves, a viable trajectory can be generated between the exit point of the dynamic soaring maneuver and the next waypoint. The result is a complete, easily implemented three-dimensional autonomous dynamic soaring capability.


Drones ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 15
Author(s):  
Moulay A. Akhloufi ◽  
Andy Couturier ◽  
Nicolás A. Castro

Wildfires represent a significant natural risk causing economic losses, human death and environmental damage. In recent years, the world has seen an increase in fire intensity and frequency. Research has been conducted towards the development of dedicated solutions for wildland fire assistance and fighting. Systems were proposed for the remote detection and tracking of fires. These systems have shown improvements in the area of efficient data collection and fire characterization within small-scale environments. However, wildland fires cover large areas making some of the proposed ground-based systems unsuitable for optimal coverage. To tackle this limitation, unmanned aerial vehicles (UAV) and unmanned aerial systems (UAS) were proposed. UAVs have proven to be useful due to their maneuverability, allowing for the implementation of remote sensing, allocation strategies and task planning. They can provide a low-cost alternative for the prevention, detection and real-time support of firefighting. In this paper, previous works related to the use of UAV in wildland fires are reviewed. Onboard sensor instruments, fire perception algorithms and coordination strategies are considered. In addition, some of the recent frameworks proposing the use of both aerial vehicles and unmanned ground vehicles (UGV) for a more efficient wildland firefighting strategy at a larger scale are presented.


2001 ◽  
Author(s):  
Jesse Lucas ◽  
Jennie Gallimore ◽  
S. Narayanan

2021 ◽  
Vol 2 (2) ◽  
pp. 105-115
Author(s):  
Mahmod Al-Bkree

This work is to optimize perimeter surveillance and explore the distribution of ground bases for unmanned aerial vehicles along the Jordanian border and optimize the set of technologies for each aerial vehicle. This model is part of ongoing research on perimeter security systems based on unmanned aerial vehicles. The suggested models give an initial insight about selecting technologies carried by unmanned aerial vehicles based on their priority; it runs for a small scale system that can be expanded, the initial results show the need for at least four ground bases along the length of the border, and a selected set of various technologies for each vehicle.


Sign in / Sign up

Export Citation Format

Share Document