wireless coverage
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 25)

H-INDEX

10
(FIVE YEARS 2)

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 223
Author(s):  
Ahmad Sawalmeh ◽  
Noor Shamsiah Othman ◽  
Guanxiong Liu ◽  
Abdallah Khreishah ◽  
Ali Alenezi ◽  
...  

Unmanned aerial vehicles (UAVs) can be deployed as backup aerial base stations due to cellular outage either during or post natural disaster. In this paper, an approach involving multi-UAV three-dimensional (3D) deployment with power-efficient planning was proposed with the objective of minimizing the number of UAVs used to provide wireless coverage to all outdoor and indoor users that minimizes the required UAV transmit power and satisfies users’ required data rate. More specifically, the proposed algorithm iteratively invoked a clustering algorithm and an efficient UAV 3D placement algorithm, which aimed for maximum wireless coverage using the minimum number of UAVs while minimizing the required UAV transmit power. Two scenarios where users are uniformly and non-uniformly distributed were considered. The proposed algorithm that employed a Particle Swarm Optimization (PSO)-based clustering algorithm resulted in a lower number of UAVs needed to serve all users compared with that when a K-means clustering algorithm was employed. Furthermore, the proposed algorithm that iteratively invoked a PSO-based clustering algorithm and PSO-based efficient UAV 3D placement algorithms reduced the execution time by a factor of ≈1/17 and ≈1/79, respectively, compared to that when the Genetic Algorithm (GA)-based and Artificial Bees Colony (ABC)-based efficient UAV 3D placement algorithms were employed. For the uniform distribution scenario, it was observed that the proposed algorithm required six UAVs to ensure 100% user coverage, whilst the benchmarker algorithm that utilized Circle Packing Theory (CPT) required five UAVs but at the expense of 67% of coverage density.


Author(s):  
Karrar Shakir Muttair ◽  
Ali Z. Ghazi Zahid ◽  
Oras A. Shareef Al-Ani ◽  
Ahmed Mohammed Q. AL-Asadi ◽  
Mahmood F. Mosleh

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Ali Babar Abbasi ◽  
Rafay I. Ansari ◽  
Gabriel G. Machado ◽  
Vincent F. Fusco

AbstractAntenna arrays and multi-antenna systems are essential in beyond 5G wireless networks for providing wireless connectivity, especially in the context of Internet-of-Everything. To facilitate this requirement, beamforming technology is emerging as a key enabling solution for adaptive on-demand wireless coverage. Despite digital beamforming being the primary choice for adaptive wireless coverage, a set of applications rely on pure analogue beamforming approaches, e.g., in point-to-multi point and physical-layer secure communication links. In this work, we present a novel scalable analogue beamforming hardware architecture that is capable of adaptive 2.5-dimensional beam steering and beam shaping to fulfil the coverage requirements. Beamformer hardware comprises of a finite size Maxwell fisheye lens used as a scalable feed network solution for a semi-circular array of monopole antennas. This unique hardware architecture enables a flexibility of using 2 to 8 antenna elements. Beamformer development stages are presented while experimental beam steering and beam shaping results show good agreement with the estimated performance.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hazim Shakhatreh ◽  
Khaled Hayajneh ◽  
Khaled Bani-Hani ◽  
Ahmad Sawalmeh ◽  
Muhammad Anan

Due to natural disasters, unmanned aerial vehicles (UAVs) can be deployed as aerial wireless base stations when conventional cellular networks are out of service. They can also supplement the mobile ground station to provide wireless devices with improved coverage and faster data rates. Cells on wheels (CoWs) can also be utilized to provide enhanced wireless coverage for short-term demands. In this paper, a single CoW cooperates with a single UAV in order to provide maximum wireless coverage to ground users. The optimization problem is formulated to find the following: (1) the optimal 2D placement of the CoW, (2) the optimal 3D placement of the UAV, (3) the optimal bandwidth allocation, (4) the percentage of the available bandwidth that must be provided to the CoW and UAV, and (5) the priority of wireless coverage; which maximizes the number of covered users. We utilize the exhaustive search (ES) and particle swarm optimization (PSO) algorithms to solve the optimization problem. The effectiveness of the proposed algorithms is validated using simulation results.


Author(s):  
Bin Sun ◽  
Hongjian Liao ◽  
Kaixi Liu ◽  
Jianwen Ding ◽  
Wei Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document