Effects of Oxidant Air-pollution on Needle Health and Annual-ring Width in a Ponderosa Pine Forest

1986 ◽  
Vol 13 (3) ◽  
pp. 229-234 ◽  
Author(s):  
Wayne T. Williams ◽  
JoAnne Ackermann Williams

More than 485,000 hectares of the Ponderosa Pine forests in the southern Sierra Nevada of California are diseased as a result of air pollution, while approximately 25% of the area of Sequoia-Kings Canyon National Park receives enough oxidant air-pollution to elicit symptoms of smog injury on Ponderosa Pine, the dominant mid-elevation tree.In 1983 we re-examined four permanent study plots that had been established in 1974–75. Smog symptoms on current needles in 1983 occurred on 23.8% of the trees compared with 14.5% only in 1975. Second-year needles had 60.7% showing symptoms compared with 44.2% in 1975. Less than 0.5% of the trees retained 6-years-old needles, and 21% had only 2 years of needle retention. Mortality attributed to air pollution was observed.

Author(s):  
Jane Bock ◽  
Carl Bock

This progress report summarized our findings in three years of research at Wind Cave National Park. Effects of prescription burns upon vegetation, birds, rodents, and bison were studied for three years in ponderosa pine forest and pine-grassland ecotone of Wind Cave National Park, South Dakota. We established study plots and analyzed vegetation in summer 1979, prior to fall 1979 and spring 1980 burning. Vegetation and wildlife populations were studied in 1980 and 1981, through two post-fire growing seasons.


1990 ◽  
Vol 20 (2) ◽  
pp. 193-199 ◽  
Author(s):  
K. L. Taylor ◽  
R. W. Fonda

The fuel structure and flammability of subalpine fir (Abieslasiocarpa (Hook.) Nutt.) stands were studied to determine the relationship between these forests and fire. It has long been known that subalpine fir forests burn catastrophically, but the contributions of fuel structure and fuel moisture to this pattern of burning have been relatively unstudied. This investigation discovered two relationships. First, over twice as much fuel in subalpine fir forests accumulated around the bases of the fir trees than in the forest as a whole, and the many dead branches on the lower trunks may allow fire to travel up into the canopy. Second, the fuels in subalpine fir forests were more flammable at the end of the summer than at the beginning, and maximum flammability was achieved in early August when the fuel moisture was between 16 and 22%. We also found that the fuel structure of subalpine fir was different from that of fire-stable ponderosa pine (Pinusponderosa Laws.) forests. The fuel around the bases of the trees in ponderosa pine forests was not significantly different from that in the entire forest, and there were few branches on the lower trunks.


2021 ◽  
Author(s):  
Jonathon James Donager ◽  
Andrew Joel Sánchez Meador ◽  
David William Huffman

Abstract Context. Managers aiming to utilize wildland fire to restore southwestern ponderosa pine landscapes require better understanding of forest cover patterns produced at multiple scales. Restoration effectiveness of wildland fires managed for resource benefit can be evaluated against natural ranges of variation.Objectives. We describe landscape patterns within reference landscapes, including restored and functioning ponderosa pine forests of northern Arizona, and compare them to wildland fires managed for resource benefit. We make comparisons along a gradient of extents and assess the effects of scale on landscape differences.Methods. Using Sentinel-2 imagery, we classified ponderosa pine forest cover and calculated landscape metrics across a gradient of landscape extent within reference and managed landscapes. We used non-parametric tests to assess differences. We used random forest models to assess and explore which landscape metrics were most importance in differentiating landscape patterns.Results. Managed wildfire landscapes were significantly different from reference landscapes for most metrics and extents (15 ha to 840 ha). Landscape type (managed vs. reference) became increasingly differentiable with scale, with area and aggregation metrics being the most informative. Classification models increased in accuracy despite fewer observations with increasing scale.Conclusions. Wildland fires managed for resource benefit in ponderosa pine forests of northern Arizona are not producing landscape patterns consistent with reference landscapes likely due to predominance of low-severity burning and minimal resulting changes in overstory structure. Differences become more pronounced with increasing landscape size and suggest small-scale heterogeneity and mid - and large-scale homogeneity within each landscape type.


Nature ◽  
2004 ◽  
Vol 432 (7013) ◽  
pp. 87-90 ◽  
Author(s):  
Jennifer L. Pierce ◽  
Grant A. Meyer ◽  
A. J. Timothy Jull

2004 ◽  
Vol 116 (3) ◽  
pp. 246-251 ◽  
Author(s):  
HEATHER M. SWANSON ◽  
BREANNA KINNEY ◽  
ALEXANDER CRUZ

2009 ◽  
Vol 9 (2) ◽  
pp. 615-634 ◽  
Author(s):  
G. M. Wolfe ◽  
J. A. Thornton ◽  
R. L. N. Yatavelli ◽  
M. McKay ◽  
A. H. Goldstein ◽  
...  

Abstract. During the Biosphere Effects on AeRosols and Photochemistry EXperiment 2007 (BEARPEX-2007), we observed eddy covariance (EC) fluxes of speciated acyl peroxy nitrates (APNs), including peroxyacetyl nitrate (PAN), peroxypropionyl nitrate (PPN) and peroxymethacryloyl nitrate (MPAN), above a Ponderosa pine forest in the western Sierra Nevada. All APN fluxes are net downward during the day, with a median midday PAN exchange velocity of −0.3 cm s−1; nighttime storage-corrected APN EC fluxes are smaller than daytime fluxes but still downward. Analysis with a standard resistance model shows that loss of PAN to the canopy is not controlled by turbulent or molecular diffusion. Stomatal uptake can account for 25 to 50% of the observed downward PAN flux. Vertical gradients in the PAN thermal decomposition (TD) rate explain a similar fraction of the flux, suggesting that a significant portion of the PAN flux into the forest results from chemical processes in the canopy. The remaining "unidentified" portion of the net PAN flux (~15%) is ascribed to deposition or reactive uptake on non-stomatal surfaces (e.g. leaf cuticles or soil). Shifts in temperature, moisture and ecosystem activity during the summer – fall transition alter the relative contribution of stomatal uptake, non-stomatal uptake and thermochemical gradients to the net PAN flux. Daytime PAN and MPAN exchange velocities are a factor of 3 smaller than those of PPN during the first two weeks of the measurement period, consistent with strong intra-canopy chemical production of PAN and MPAN during this period. Depositional loss of APNs can be 3–21% of the gross gas-phase TD loss depending on temperature. As a source of nitrogen to the biosphere, PAN deposition represents approximately 4–19% of that due to dry deposition of nitric acid at this site.


Sign in / Sign up

Export Citation Format

Share Document