Applications of Electron Microscopy to Containment of Radio-Nuclides

Author(s):  
Carol M. Jantzen

The long radioactive lifetime of the fission products in nuclear wastes requires that the materials be isolated from the biosphere for periods of 103 to 105 years. One method of accomplishing this is to consolidate the waste into a chemically stable solid form and to contain this within a multiple barrier canister which can be transported to a geologically stable repository for long-term storage. A number of candidate solid waste forms are being assessed to determine their suitability for incorporating various nuclear waste compositions and they include borosilicate glass (the current reference form), ceramics, high silica glasses, and cement.

2002 ◽  
Vol 713 ◽  
Author(s):  
Marsha J. Lambregts ◽  
Steven M. Frank

ABSTRACTArgonne National Laboratory has developed an electrometallurgical treatment for DOE spent metallic nuclear fuel. Fission products are immobilized in a durable glass bonded sodalite ceramic waste form (CWF) suitable for long term storage in a geological repository. Cesium is estimated to be in the waste form at approximately 0.1 wt.%. The exact disposition of cesium was uncertain and it was believed to be uniformly distributed throughout the waste form. A correlation of X-ray diffractometry (XRD), electron microscopy (EM), and nuclear magnetic resonance spectroscopy (NMR) performed on surrogate ceramic waste forms with high cesium loadings found a high cesium content in the glass phase and in several non-sodalite aluminosilicate phases. Cesium was not detected in the sodalite phase.


1990 ◽  
Vol 212 ◽  
Author(s):  
D. E. Grandstaff ◽  
V. J. Grassi ◽  
A. C. Lee ◽  
G. C. Ulmer

ABSTRACTSystematic differences in pH, cation/proton ion activity ratios, and redox have been observed between solutions produced in rock-water hydrothermal experiments with tuff, granite, and basalt. Stable pH values in tuff-water experiments may be as much as 1.5 pH units more acidic than basalt-water experiments at the same temperature and ionic strength. Redox (log fO2) values in 300°C tuff experiments are 4–7 orders of magnitude more oxidizing than basalt experiments and ca. 4 log units more oxidizing than the magnetite-hematite buffer. Such fluid differences could significantly affect the performance of a high-level nuclear waste repository and should be considered in repository design and siting.


1984 ◽  
Vol 25 (4) ◽  
pp. 891
Author(s):  
Gary L. Downey ◽  
Steve H. Murdock ◽  
F. Larry Leistritz ◽  
Rita R. Hamm

2015 ◽  
Vol 467 ◽  
pp. 855-862 ◽  
Author(s):  
G. Ajeesh ◽  
Shantanu Bhowmik ◽  
Venugopal Sivakumar ◽  
Lalit Varshney ◽  
Virendra Kumar ◽  
...  

1981 ◽  
Vol 11 ◽  
Author(s):  
Pedro B. Macedo ◽  
Aaron Barkatt ◽  
Joseoph H. Simmons

A model has been developed to predict the long-term leach or release rates of various waste-form materials under repository conditions.


2006 ◽  
Vol 932 ◽  
Author(s):  
Damien Féron ◽  
Digby D. Macdonald

ABSTRACTThe corrosion resistance of container materials in underground repositories is an important issue for the safe disposal of High Level Nuclear Waste (HLNW). The reliable prediction of container degradation rate and engineering barrier integrity over extended periods, up to several thousands years or even several hundreds of thousands of years, represents one of the greatest scientific and technical challenges. The first and the second International Workshops on Prediction of Long Term Corrosion Behaviour in Nuclear Waste Systems, which were held in 2001 (Cadarache) and 2004 (Nice), sought to compare the scientific and experimental approaches that are being developed in various organisations worldwide for predicting long term corrosion phenomena, including corrosion strategies for interim storage and geological disposal. The lessons learned during these Workshops, include the necessity of developing two approaches based on semi-empiricism and determinism in a complementary manner for effective prediction. The use of archaeological artefacts to demonstrate the feasibility of long term storage and to provide a database for testing and validating modelling work was also emphasized.


1980 ◽  
Vol 35 (2) ◽  
pp. 171-179 ◽  
Author(s):  
J. C. Ruffenach ◽  
R. Hagemann ◽  
E. Roth

AbstractThe Oklo natural nuclear reactors have been studied mainly by isotopic and chemical analyses of uranium and fission products. Interpretation of these analyses allows parameters which characterize these reactions (flux, fluence,...), and also the age and duration of the nuclear reactions to be evaluated. The mechanisms and extent of fission-product migration can also be discussed. The behaviour of various elements formed in the Oklo uraninite and in oxyde fuels of pressurized water reactors is compared and found to be similar. Therefore, experience gained from the study of the Oklo phenomenon can provide valuable information on the long-term storage of radioactive wastes in geological media.


Sign in / Sign up

Export Citation Format

Share Document