Prediction of Long Term Corrosion Behaviour in Nuclear Waste Systems

2006 ◽  
Vol 932 ◽  
Author(s):  
Damien Féron ◽  
Digby D. Macdonald

ABSTRACTThe corrosion resistance of container materials in underground repositories is an important issue for the safe disposal of High Level Nuclear Waste (HLNW). The reliable prediction of container degradation rate and engineering barrier integrity over extended periods, up to several thousands years or even several hundreds of thousands of years, represents one of the greatest scientific and technical challenges. The first and the second International Workshops on Prediction of Long Term Corrosion Behaviour in Nuclear Waste Systems, which were held in 2001 (Cadarache) and 2004 (Nice), sought to compare the scientific and experimental approaches that are being developed in various organisations worldwide for predicting long term corrosion phenomena, including corrosion strategies for interim storage and geological disposal. The lessons learned during these Workshops, include the necessity of developing two approaches based on semi-empiricism and determinism in a complementary manner for effective prediction. The use of archaeological artefacts to demonstrate the feasibility of long term storage and to provide a database for testing and validating modelling work was also emphasized.

1990 ◽  
Vol 212 ◽  
Author(s):  
D. E. Grandstaff ◽  
V. J. Grassi ◽  
A. C. Lee ◽  
G. C. Ulmer

ABSTRACTSystematic differences in pH, cation/proton ion activity ratios, and redox have been observed between solutions produced in rock-water hydrothermal experiments with tuff, granite, and basalt. Stable pH values in tuff-water experiments may be as much as 1.5 pH units more acidic than basalt-water experiments at the same temperature and ionic strength. Redox (log fO2) values in 300°C tuff experiments are 4–7 orders of magnitude more oxidizing than basalt experiments and ca. 4 log units more oxidizing than the magnetite-hematite buffer. Such fluid differences could significantly affect the performance of a high-level nuclear waste repository and should be considered in repository design and siting.


2019 ◽  
Vol 9 (12) ◽  
pp. 2437 ◽  
Author(s):  
Sebastian Wegel ◽  
Victoria Czempinski ◽  
Pao-Yu Oei ◽  
Ben Wealer

The nuclear industry in the United States of America has accumulated about 70,000 metric tons of high-level nuclear waste over the past decades; at present, this waste is temporarily stored close to the nuclear power plants. The industry and the Department of Energy are now facing two related challenges: (i) will a permanent geological repository, e.g., Yucca Mountain, become available in the future, and if yes, when?; (ii) should the high-level waste be transported to interim storage facilities in the meantime, which may be safer and more cost economic? This paper presents a mathematical transportation model that evaluates the economic challenges and costs associated with different scenarios regarding the opening of a long-term geological repository. The model results suggest that any further delay in opening a long-term storage increases cost and consolidated interim storage facilities should be built now. We show that Yucca Mountain’s capacity is insufficient and additional storage is necessary. A sensitivity analysis for the reprocessing of high-level waste finds this uneconomic in all cases. This paper thus emphasizes the urgency of dealing with the high-level nuclear waste and informs the debate between the nuclear industry and policymakers on the basis of objective data and quantitative analysis.


Author(s):  
Kenneth R. Trethewey

It is well known that some metals suffer damage caused by the evolution of hydrogen in certain conditions in nuclear applications. Of particular current interest is the use of alloys for use in containers for the long-term storage of high level nuclear waste. Calculations for the rates of corrosion of metals where hydrogen evolution is possible rely upon measurements of the reaction kinetics, but it is difficult to obtain reliable and accurate values for the kinetic constants. Standard electrochemical tests can be used, but the analysis of the results is complex because of the need to deconvolute the curves. This paper presents a computer model for the analysis of the data that is checked by its use on experimental data from a number of nuclear materials.


1990 ◽  
Vol 212 ◽  
Author(s):  
Charles G. Interrante ◽  
Carla A. Messina ◽  
Anna C. Fraker

ABSTRACTThe work reported here is part of a program conducted by the Nuclear Regulatory Commission on the efficacy of proposed plans for radionuclide containment for long-term storage of high-level nuclear waste (HLW). An important element of that program is the review and evaluation of available literature on components of a waste package. A review process and a database have been developed and tailored to provide information quickly to an individual who has a question about a particular material or component of a waste package. The database is uniquely suited to serve as a guide to indicate special areas where data and information needs exist on questions related to radionuclide containment. Additions to the database are made as information becomes available, and this source is as current as the published literature. A description of the review process and the database is given.


Author(s):  
Robert S. Dyer ◽  
Ella Barnes ◽  
Randall L. Snipes ◽  
Steinar Ho̸ibra˚ten ◽  
Valery Sveshnikov ◽  
...  

Northwest Russia contains large quantities of spent nuclear fuel (SNF) that potentially threaten the environmental security of the surrounding Arctic Region. The majority of the SNF from Russian decommissioned nuclear submarines is currently stored either onboard submarines or in floating storage vesssels in Northwest Russia. Some of the SNF is damaged, stored in an unstable condition, or of a type that cannot currently be reprocessed. Most of the existing storage facilities being used in Northwest Russia do not meet health and safety and physical security requirements. Existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing this fuel. Therefore, additional interim storage capacity is required. The removal, handling, interim storage, and shipment of the fuel pose technical, ecological, and security challenges. The U.S. Environmental Protection Agency (EPA), in cooperation with the U.S. Department of Defense and the Department of Energy’s (DOE) Oak Ridge National Laboratory, along with the Norwegian Defence Research Establishment, is working closely with the Ministry of Defense and the Ministry of Atomic Energy of the Russian Federation (RF) to develop an improved and integrated management system for interim storage of military SNF in NW Russia. The cooperative effort consists of three subprojects involving the development of: (1) a prototype dual-purpose, metal-concrete container for both transport and long-term storage of RF military SNF, (2) the first transshipment/interim storage facility for these containers, and (3) improved fuel preparation and cask loading procedures and systems to control the moisture levels within the containers. The first subproject, development of a prototype dual-purpose container, was completed in December 2000. This was the first metal-concrete container developed, licensed, and produced in Russia for both the transportation and storage of military SNF. These containers are now in serial production. Russia plans to use these containers for the transport and interim storage of military SNF from decommissioned nuclear submarines at naval installations in the Arctic and Far East. The second subproject, the design, construction, and licensing of the first transshipment/interim storage facility in Russia, was completed in September 2003. This facility can provide interim storage for up to nineteen 40-tonne SNF containers filled with SNF for a period not to exceed two years. The primary objective of building this transshipment/interim storage facility in Murmansk, Russia was to remove a bottleneck in the RF transportation infrastructure for moving containers, loaded with SNF, from the arctic region to PO “Mayak” for reprocessing or longer-term storage. The third subproject addresses the need to improve fuel conditioning and cask operating procedures to ensure safe storage of SNF for at least 50 years. This will involve the review and improvement of existing RF procedures and systems for preparing and loading the fuel in the specially designed casks for transport and long-term storage. This subproject is scheduled for completion in December 2003. Upon completion, these subprojects are designed to provide a physically secure, accountable, and environmentally sound integrated solution that will increase the capacity for removal and transfer of SNF from decommissioned RF submarines in the Russian Federation to PO “Mayak” in central Russia.


Catalysts ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 326 ◽  
Author(s):  
Olga Senko ◽  
Marina Gladchenko ◽  
Olga Maslova ◽  
Elena Efremenko

The aim of this paper is to demonstrate the possibilities of anaerobic sludge cells immobilized into poly(vinyl alcohol) cryogel for the methanogenic conversion of various lignocellulosic waste and other media containing antibiotics (ampicillin, kanamycin, benzylpenicillin) or pesticides (chlorpyrifos or methiocarb and its derivatives). It was established that the immobilized cells of the anaerobic consortium can be stored frozen for at least three years while preserving a high level of metabolic activity. The cells after the long-term storage in an immobilized and frozen state were applied for the methanogenesis of a wide number of wastes, and an increase in both methane yield and methane portion in the produced biogas as compared to the conventionally used suspended anaerobic sludge cells, was ensured. It was shown that the “additional” introduction of bacterial Clostridium acetobutylicum, Pseudomonas sp., Enterococcus faecalis cells (also immobilized using same support) improves characteristics of methanogenesis catalyzed by immobilized anaerobic sludge.


1984 ◽  
Vol 25 (4) ◽  
pp. 891
Author(s):  
Gary L. Downey ◽  
Steve H. Murdock ◽  
F. Larry Leistritz ◽  
Rita R. Hamm

2006 ◽  
Vol 932 ◽  
Author(s):  
William H Bowyer

ABSTRACTThe Swedish programme for disposal of high level nuclear waste includes the development of a container which comprises a cast iron load bearing canister contained in a 50 mm thick copper corrosionshield.The temperature of the outside of the canister is likely be up to 100°C, and repository processes may lead to long term loads of up to 50MPa. Creep of the copper is therefore an issue. SKB (The Swedish Nuclear Fuel and Waste Management Co.) have been conducted tests on three materials, OF copper containing 10ppm sulphur (OF1), OF copper containing 6ppm sulphur (OF2) and OF copper containing 6ppm sulphur and 50ppm phosphorus (OFP). In order to improve confidence in extrapolation of test results to practical temperatures and stresses, it is desirable to support the extrapolation procedures with a physical model.Life predictions made using the Frost and Ashby model [5] together with a simplification of the Cocksand Ashby model [6] provide good agreement with published experimental data for OF2 and OFPmaterials. Extrapolation of this data using the model leads to life predictions of 12,000 years for the OF2material and 120,000 years for OFP material. The prediction for OFP depends on an assumption that an observed strengthening mechanism conferred by phosphorus at high stresses and temperatures, is equally as effective under repository conditions.OF1 material fails after a relatively short life and by a different mechanism to OF2 and OFP. The changein mechanism may be explained, using the model [6], for cases where segregating species reduce surface energy of grain boundary voids. It is suggested that in this case the segregating species is sulphur.


Sign in / Sign up

Export Citation Format

Share Document