Ultrastructure of Plant Leaf Tissue Infected with Mite-Borne Viral-Like Pathogens

Author(s):  
O. E. Bradfute ◽  
R. E. Whitmoyer ◽  
L. R. Nault

A pathogen transmitted by the eriophyid mite, Aceria tulipae, infects a number of Gramineae producing symptoms similar to wheat spot mosaic virus (1). An electron microscope study of leaf ultrastructure from systemically infected Zea mays, Hordeum vulgare, and Triticum aestivum showed the presence of ovoid, double membrane bodies (0.1 - 0.2 microns) in the cytoplasm of parenchyma, phloem and epidermis cells (Fig. 1 ).

1962 ◽  
Vol s3-103 (62) ◽  
pp. 147-153
Author(s):  
DOREEN E. ASHHURST ◽  
J. A. CHAPMAN

The cytoplasmic inclusions of the neurones of adult Locusta migratoria have been examined in the electron microscope. The mitochondria are easily recognized by their cristae and outer double membranes. Electron-dense inclusions, also with an outer double membrane but possessing numerous closely spaced internal lamellae in various orientations, are probably small lipochondria. Larger and more diffuse inclusions comprising crescent-shaped aggregates of loosely packed parallel lamellae and vesicles are present; the possible significance of these larger inclusions is discussed. A system of numerous small vesicles distributed throughout the cytoplasm makes up the endoplasmic reticulum.


1960 ◽  
Vol 7 (1) ◽  
pp. 87-92 ◽  
Author(s):  
M. F. Moody ◽  
J. D. Robertson

An electron microscope study has been made of octopus and amphibian photoreceptors, after fixing with KMnO4 and embedding in araldite. What has previously been seen as a single dense stratum bounding the tubular compartments (octopus) or the double membrane discs (rods and cones), now shows a double structure. We interpret this as showing that these tubules and discs have similar bounding surfaces, which are probably directly related to the cell membrane. This is confirmed by the finding that the tubules and discs are (at least occasionally) continuous with the cell membrane.


1957 ◽  
Vol 3 (2) ◽  
pp. 301-310 ◽  
Author(s):  
J. Roberto Sotelo ◽  
Omar Trujillo-Cenóz

The structure of the vitelline nuclei of Lycosidae and Thomisidae was described as follows: Vitelline nuclei are constituted of two parts: (a) a peripheral layer (vitelline body cortex), and (b) a central core. The vitelline body cortex is demonstrated to be formed by many cisternae of the endoplasmic reticulum among which mitochondria and Golgi elements are intermingled. The central core is made up mainly of a special type of body described under the name of "capsulated body." Capsulated bodies comprise a capsular layer, limited by a membrane, and two central masses called "geminated masses," each one limited by a double membrane. Irregular masses of closely packed vesicles are found in some cases among the capsulated bodies and free vesicles are present in large numbers. The optical properties of the vitelline body cortex compared with the electron microscope findings lead us to the concept that this layer is a "composite body" according to Weiner's theory.


Author(s):  
A. Campos ◽  
J. Vilches ◽  
J. Gomez

Microgranules have been described with different names in keratinized and in nonkeratinized epithelium. In keratinized epithelium it seems clear that the microgranules are lamellated bodies bounded by a membrane which empty their contents into the intercellular space. Their existence in nonkeratinized epithelium is more debatable. Until now the so-called microgranules have been described in nonkeratinized bucal, lingual and cervical epithelium. In the present work we describe the morphology and nature of such structures in human vaginal epithelium.Biopsies from the midlevel of the vaginal mucosa were taken from voluntary fertile women. The specimens were divided into three groups with four vaginal specimens. The first group was obtained in the folicular phase; those of the second in the postovulatory phase and, finally, the last group corresponded to the secretory phase.


1979 ◽  
Vol 41 (04) ◽  
pp. 655-661 ◽  
Author(s):  
L Tranqui ◽  
M H Prandini ◽  
M Suscillon

1980 ◽  
Vol 42 (2) ◽  
pp. 255-268 ◽  
Author(s):  
Shuhei IMAYAMA ◽  
Hiromu KOHDA ◽  
Harukuni URABE

1987 ◽  
Vol 41 (6) ◽  
pp. 1238-1243
Author(s):  
Yohichiroh Soh ◽  
Junroh Tahara ◽  
Takashi Hayashikawa ◽  
Masatoshi Hitaka ◽  
Kohzoh Kubota ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document