Dislocations, Ordering and Antiferromagnetic Domains in MnO

Author(s):  
D. J. Barber ◽  
R. G. Evans

Manganese (II) oxide, MnO, in common with CoO, NiO and FeO, possesses the NaCl structure and shows antiferromagnetism below its Neel point, Tn∼ 122 K. However, the defect chemistry of the four oxides is different and the magnetic structures are not identical. The non-stoichiometry in MnO2 small (∼2%) and below the Tn the spins lie in (111) planes. Previous work reported observations of magnetic features in CoO and NiO. The aim of our work was to find explanations for certain resonance results on antiferromagnetic MnO.Foils of single crystal MnO were prepared from shaped discs by dissolution in a mixture of HCl and HNO3. Optical microscopy revealed that the etch-pitted foils contained cruciform-shaped precipitates, often thick and proud of the surface but red-colored when optically transparent (MnO is green). Electron diffraction and probe microanalysis indicated that the precipitates were Mn2O3, in contrast with recent findings of Co3O4 in CoO.

Author(s):  
G. G. Hembree ◽  
M. A. Otooni ◽  
J. M. Cowley

The formation of oxide structures on single crystal films of metals has been investigated using the REMEDIE system (for Reflection Electron Microscopy and Electron Diffraction at Intermediate Energies) (1). Using this instrument scanning images can be obtained with a 5 to 15keV incident electron beam by collecting either secondary or diffracted electrons from the crystal surface (2). It is particularly suited to studies of the present sort where the surface reactions are strongly related to surface morphology and crystal defects and the growth of reaction products is inhomogeneous and not adequately described in terms of a single parameter. Observation of the samples has also been made by reflection electron diffraction, reflection electron microscopy and replication techniques in a JEM-100B electron microscope.A thin single crystal film of copper, epitaxially grown on NaCl of (100) orientation, was repositioned on a large copper single crystal of (111) orientation.


2010 ◽  
Vol 82 (17) ◽  
Author(s):  
Matthias Frontzek ◽  
Fei Tang ◽  
Peter Link ◽  
Astrid Schneidewind ◽  
Jens-Uwe Hoffman ◽  
...  

1972 ◽  
Vol 50 (24) ◽  
pp. 3079-3084 ◽  
Author(s):  
J. A. R. Stiles ◽  
C. V. Stager

The magnetic structures of antiferromagnetic manganese pyrophosphate and copper pyrophosphate have been determined by single crystal neutron diffraction techniques. There have been two previous determinations of the structure of manganese pyrophosphate. The discrepancy between these results is explained by postulating a crystallographic phase transition.


Sign in / Sign up

Export Citation Format

Share Document