High-spatial-resolution x-ray microanalysis of Al-2wt.% Cu aluminum thin films

Author(s):  
A. D. Romig ◽  
D. R. Frear ◽  
T. J. Headley

Aluminum - 2 wt.% copper alloys are commonly used in thin film form as interconnect metallization lines for integrated circuits. Experience has shown that the addition of the Cu to the Al, albeit at a decrease in conductivity, makes the metallizations more resistant to failure by electromigration. However, the mechanism by which Cu increases the resistance to electromigration has never been positively identified. One theory proposes that Cu coats the Al grain boundaries (boundaries are enriched in Cu) and retards grain boundary diffusion thereby reducing electromigration. Another theory suggests that a continuous thin layer of CuAl2 forms along the boundaries also reducing grain boundary transport and therefore the tendency to electromigrate. Recently, Frear et al. have reported on a detailed set of experiments to examine these theories from a microstructural viewpoint. Here, the details of the high spatial resolution microanalysis done to support the study of Fear, et al. are reported.Al- 2wt.% Cu was magnetron sputtered onto a borosilicate glass (BSG) coated (100) Si wafer. The Al-Cu films were sputtered at room temperature from a single source under an argon atmosphere at a deposition rate of 100 nm/min. Films 400 and 800 nm thick were prepared. The films were annealed under a 15% hydrogen forming gas (reducing) at 425°C for 35 min.

Radiology ◽  
2015 ◽  
Vol 275 (1) ◽  
pp. 310-310 ◽  
Author(s):  
Richard M. Morris ◽  
Lang Yang ◽  
Miguel A. Martín-Fernández ◽  
Jose M. Pozo ◽  
Alejandro F. Frangi ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1721
Author(s):  
Heon Yong Jeong ◽  
Hyung San Lim ◽  
Ju Hyuk Lee ◽  
Jun Heo ◽  
Hyun Nam Kim ◽  
...  

The effect of scintillator particle size on high-resolution X-ray imaging was studied using zinc tungstate (ZnWO4) particles. The ZnWO4 particles were fabricated through a solid-state reaction between zinc oxide and tungsten oxide at various temperatures, producing particles with average sizes of 176.4 nm, 626.7 nm, and 2.127 μm; the zinc oxide and tungsten oxide were created using anodization. The spatial resolutions of high-resolution X-ray images, obtained from utilizing the fabricated particles, were determined: particles with the average size of 176.4 nm produced the highest spatial resolution. The results demonstrate that high spatial resolution can be obtained from ZnWO4 nanoparticle scintillators that minimize optical diffusion by having a particle size that is smaller than the emission wavelength.


2005 ◽  
Author(s):  
Michael R. Squillante ◽  
Richard A. Myers ◽  
Mitchell Woodring ◽  
James F. Christian ◽  
Frank Robertson ◽  
...  

Author(s):  
Toru Aoki ◽  
Kento Tabata ◽  
Ryota Okate ◽  
Shailendra Singh ◽  
Hiroki Kase ◽  
...  

Author(s):  
Sho Miyao ◽  
Takahiro Tanino ◽  
Nobuyasu Fujioka ◽  
Izumi Hikita ◽  
Tomohiro Morinaga ◽  
...  

2007 ◽  
Author(s):  
Courtney A. Brewer ◽  
Fernando Brizuela ◽  
Dale Martz ◽  
Georgiy Vaschenko ◽  
Mario C. Marconi ◽  
...  

2011 ◽  
Vol 50 ◽  
pp. 122202 ◽  
Author(s):  
Tomoharu Nakazato ◽  
Toshihiko Shimizu ◽  
Kohei Yamanoi ◽  
Kohei Sakai ◽  
Kohei Takeda ◽  
...  

1995 ◽  
Vol 44 (1-3) ◽  
pp. 406-408 ◽  
Author(s):  
Yu.V. Zanevsky ◽  
S.P. Chernenko ◽  
G.A. Cheremukhina ◽  
D.E. Donets ◽  
O.V. Fateev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document