Experiments on REM and SREM using a Tem/Stem Microscope with a Configurable Angle-Resolving Detector

Author(s):  
H. Banzhof ◽  
I. Daberkow

A Philips EM 420 electron microscope equipped with a field emission gun and an external STEM unit was used to compare images of single crystal surfaces taken by conventional reflection electron microscopy (REM) and scanning reflection electron microscopy (SREM). In addition an angle-resolving detector system developed by Daberkow and Herrmann was used to record SREM images with the detector shape adjusted to different details of the convergent beam reflection high energy electron diffraction (CBRHEED) pattern.Platinum single crystal spheres with smooth facets, prepared by melting a thin Pt wire in an oxyhydrogen flame, served as objects. Fig. 1 gives a conventional REM image of a (111)Pt single crystal surface, while Fig. 2 shows a SREM record of the same area. Both images were taken with the (555) reflection near the azimuth. A comparison shows that the contrast effects of atomic steps are similar for both techniques, although the depth of focus of the SREM image is reduced as a result of the large illuminating aperture. But differences are observed at the lengthened images of small depressions and protrusions formed by atomic steps, which give a symmetrical contrast profile in the REM image, while an asymmetric black-white contrast is observed in the SREM micrograph. Furthermore the irregular structures which may be seen in the middle of Fig. 2 are not visible in the REM image, although it was taken after the SREM record.

Author(s):  
G. G. Hembree ◽  
M. A. Otooni ◽  
J. M. Cowley

The formation of oxide structures on single crystal films of metals has been investigated using the REMEDIE system (for Reflection Electron Microscopy and Electron Diffraction at Intermediate Energies) (1). Using this instrument scanning images can be obtained with a 5 to 15keV incident electron beam by collecting either secondary or diffracted electrons from the crystal surface (2). It is particularly suited to studies of the present sort where the surface reactions are strongly related to surface morphology and crystal defects and the growth of reaction products is inhomogeneous and not adequately described in terms of a single parameter. Observation of the samples has also been made by reflection electron diffraction, reflection electron microscopy and replication techniques in a JEM-100B electron microscope.A thin single crystal film of copper, epitaxially grown on NaCl of (100) orientation, was repositioned on a large copper single crystal of (111) orientation.


Author(s):  
P. E. Højlund Nielsen ◽  
J. M. Cowley

Reflection electron microscopy was widely used before 1960 for the study of surfaces. For the imaging diffuse scattered electrons was applied. For avoiding a severe foreshortening the surface was illuminated and viewed at fairly large angles. That resulted in a large energy spread of the scattered electrons so the resolution was limited to about 500Å due to chromatic aberration. Since such a resolution could be achieved more readily in scanning microscopes, the method was abandoned. However for single crystal surfaces the situation is entirely different. If the surface can be maintained reasonably clean, strong diffraction spots can be obtained and the energy spread in the diffracted beam is usually small; thus the imaging of the surface can be performed in a manner similar to the dark field imaging of a thin crystalline specimen.


1984 ◽  
Vol 41 ◽  
Author(s):  
Tung Hsu ◽  
J. M. Cowley

AbstractReflection electron microscopy (REM) utilizes the Bragg reflected high energy electrons to form the image of a crystal surface. Images of dislocations, atomic steps, reconstructions of surface layers of atoms and adatoms, stacking faults and twinning, superlattices, etc., have been successfully observed on a wide variety of specimens. Contrast is mainly due to diffraction and phase, which distiguished REM as a unique method for high spacial resolution and high sensitivity imaging of the surfaces of bulk specimens. REM can be effectively performed under UHV as well as under the moderate vacuum of an ordinary commercial electron microscope.


Author(s):  
M. Gajdardziska-Josifovska

Parabolas have been observed in the reflection high-energy electron diffraction (RHEED) patterns from surfaces of single crystals since the early thirties. In the last decade there has been a revival of attempts to elucidate the origin of these surface parabolas. The renewed interest stems from the need to understand the connection between the parabolas and the surface resonance (channeling) condition, the latter being routinely used to obtain higher intensity in reflection electron microscopy (REM) images of surfaces. Several rather diverging descriptions have been proposed to explain the parabolas in the reflection and transmission Kikuchi patterns. Recently we have developed an unifying general treatment in which the parabolas are shown to be K-lines of two-dimensional lattices. Here we want to review the main features of this description and present an experimental diffraction pattern from a 30° MgO (111) surface which displays parabolas that can be attributed to the surface reconstruction.


Author(s):  
Z.L. Wang ◽  
J. Bentley ◽  
R.E. Clausing ◽  
L. Heatherly ◽  
L.L. Horton

It has been found that the abrasion of diamond-on-diamond depends on the crystal orientation. For a {100} face, the friction coefficient for sliding along <011> is much higher than that along <001>. For a {111} face, the abrasion along <11> is different from that in the reverse direction <>. To interpret these effects, a microcleavage mechanism was proposed in which the {100} and {111} surfaces were assumed to be composed of square-based pyramids and trigonal protrusions, respectively. Reflection electron microscopy (REM) has been applied to image the microstructures of these diamond surfaces.{111} surfaces of synthetic diamond:The synthetic diamonds used in this study were obtained from the De Beers Company. They are in the as-grown condition with grain sizes of 0.5-1 mm without chemical treatment or mechanical polishing. By selecting a strong reflected beam in the reflection high-energy electron diffraction (RHEED) pattern, the dark-field REM image of the surface is formed (Fig. 1).


Author(s):  
G. L. Kellogg ◽  
P. R. Schwoebel

Although no longer unique in its ability to resolve individual single atoms on surfaces, the field ion microscope remains a powerful tool for the quantitative characterization of atomic processes on single-crystal surfaces. Investigations of single-atom surface diffusion, adatom-adatom interactions, surface reconstructions, cluster nucleation and growth, and a variety of surface chemical reactions have provided new insights to the atomic nature of surfaces. Moreover, the ability to determine the chemical identity of selected atoms seen in the field ion microscope image by atom-probe mass spectroscopy has increased or even changed our understanding of solid-state-reaction processes such as ordering, clustering, precipitation and segregation in alloys. This presentation focuses on the operational principles of the field-ion microscope and atom-probe mass spectrometer and some very recent applications of the field ion microscope to the nucleation and growth of metal clusters on metal surfaces.The structure assumed by clusters of atoms on a single-crystal surface yields fundamental information on the adatom-adatom interactions important in crystal growth. It was discovered in previous investigations with the field ion microscope that, contrary to intuition, the initial structure of clusters of Pt, Pd, Ir and Ni atoms on W(110) is a linear chain oriented in the <111> direction of the substrate.


Sign in / Sign up

Export Citation Format

Share Document