Crystal structure of choline fenofibrate (Trilipix®), (C5H14NO) (C17H14ClO4)

2016 ◽  
Vol 31 (2) ◽  
pp. 142-148
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of choline fenofibrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Choline fenofibrate crystallizes in space group Pbca (#61) with a = 12.341 03(2), b = 28.568 70(6), c = 12.025 62(2) Å, V = 4239.84(1) Å3, and Z = 8. The hydroxyl group of the choline anion makes a strong hydrogen bond to the ionized carboxylate group of the fenofibrate anion. Together with C–H···O hydrogen bonds, these link the cations and anions into layers parallel to the ac-plane. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™.

2019 ◽  
Vol 34 (4) ◽  
pp. 368-373 ◽  
Author(s):  
Zachary R. Butler ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of prednicarbate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Prednicarbate crystallizes in space group P212121 (#19) with a = 7.69990(3), b = 10.75725(3), c = 31.36008(11) Å, V = 2597.55(1) Å3, and Z = 4. In the crystal structure the long axis of the steroid ring system lies roughly parallel to the c-axis. The oxygenated side chains are orientated roughly perpendicular to the steroid ring system and are adjacent to each other, parallel to the ab-plane. The only traditional hydrogen bond donor in the prednicarbate molecule is the hydroxyl group O32–H33, but this does not participate in an O–H···O hydrogen bond. The nearest oxygen atoms to O32 are symmetry-related O32 at 4.495 Å, precluding the expected O–H···O hydrogen bond. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.


2018 ◽  
Vol 34 (1) ◽  
pp. 66-73
Author(s):  
Jordan A. Krueger ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of hydroxyzine dihydrochloride has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Hydroxyzine dihydrochloride crystallizes in space group P21 (#4) with a = 11.48735(10), b = 7.41792(7), c = 14.99234(15) Å, β = 110.4383(10)°, V = 1197.107(13) Å3, and Z = 2. The hydroxyl-containing side chain of the cation is disordered over two conformations, with ~70/30% occupancy. The crystal structure consists of alternating polar (which includes the cation-anion interactions and hydrogen bonds) and nonpolar layers parallel to the ab-plane. The crystal structure is dominated by hydrogen bonds. Each of the protonated nitrogen atoms forms a very strong hydrogen bond to one of the chloride anions. The hydroxyl group forms a strong hydrogen bond to one of the chloride anions in both conformations, and there are subtle differences in the hydrogen bonding patterns between the conformations. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1603.


2015 ◽  
Vol 30 (3) ◽  
pp. 192-198
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of ziprasidone hydrochloride monohydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Ziprasidone hydrochloride monohydrate crystallizes in space group P-1 (#2) with a = 7.250 10(3), b = 10.986 66(8), c = 14.071 87(14) Å, α = 83.4310(4), β = 80.5931(6), γ = 87.1437(6)°, V = 1098.00(1) Å3, and Z = 2. The ziprasidone conformation in the solid state is very close to the minimum energy conformation. The positively-charged nitrogen in the ziprasidone makes a strong hydrogen bond with the chloride anion. The water molecule makes two weaker bonds to the chloride, and acts as an acceptor in an N–H⋯O hydrogen bond. The powder pattern is included in the Powder Diffraction File™ as entry 00-064-1492.


2019 ◽  
Vol 34 (4) ◽  
pp. 361-367 ◽  
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of metolazone has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Metolazone crystallizes in space group P-1 (#2) with a = 8.1976(5), b = 14.4615(69), c = 16.0993(86) Å, α = 115.009(18), β = 90.096(7), γ = 106.264(4)°, V = 1644.52(9) Å3, and Z = 4. The broad (02-1) peak at 3.42° 2θ indicates stacking faults along this direction. The crystal structure consists of alternating polar and hydrocarbon layers parallel to the ac-plane. Only one of the sulfonamide groups acts as a hydrogen bond donor. Both ring nitrogen atoms act as hydrogen bond donors, but one forms an N–H···N hydrogen bond, while the other participates in an N–H···O bond. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™, to replace entry 00-066-1624.


2015 ◽  
Vol 30 (4) ◽  
pp. 333-339 ◽  
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of salmeterol xinafoate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Salmeterol xinafoate crystallizes in space group P−1 (#2) with a = 9.173 89(13), b = 9.483 79(14), c = 21.3666(4) Å, α = 82.2646(13), β = 85.2531(12), γ = 62.1565(11)°, V = 1628.37(5) Å3, and Z = 2. Key to the structure solution was linking the two fragments by a Li atom along the expected N–H···O hydrogen bond. The salmeterol cation and xinafoate anion are linked by N–H···O and O–H···O hydrogen bonds, interactions which cause the salmeterol to adjust its conformation. The hydrogen bonds result in complex chains along the b-axis. The powder pattern is included in the Powder Diffraction File™ as entry 00-065-1430.


2020 ◽  
Vol 35 (4) ◽  
pp. 286-292
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of hyoscyamine sulfate monohydrate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Hyoscyamine sulfate monohydrate crystallizes in space group P21 (#4) with a = 6.60196(2), b = 12.95496(3), c = 20.93090(8) Å, β = 94.8839(2)°, V = 1783.680(5) Å3, and Z = 2. Despite the traditional description as a dihydrate, hyoscyamine sulfate crystallizes as a monohydrate. The two independent hyoscyamine cations have different conformations, which have similar energies. One of the cations is close to the minimum-energy conformation. Each of the protonated nitrogen atoms in the cations acts as a donor to the sulfate anion. The hydroxyl group of one cation acts as a donor to the sulfate anion, while the hydroxyl group of the other cation acts as a donor to the water molecule. The water molecule acts as a donor to two different sulfate anions. The cations and anions are linked by complex chains of hydrogen bonds along the a-axis. The powder pattern has been submitted for inclusion in the Powder Diffraction File™ (PDF®).


2021 ◽  
pp. 1-7
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of edoxaban tosylate monohydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Edoxaban tosylate monohydrate crystallizes in space group P21 (#4) with a = 7.55097(2), b = 7.09010(2), c = 32.80420(21) Å, β = 96.6720(3)°, V = 1744.348(6) Å3, and Z = 2. The crystal structure consists of alternating layers of edoxaban cations and tosylate anions along the c-axis. The water molecules lie near the sulfonate end of the tosylate anions. The solid-state conformation of the edoxaban cation is determined by intermolecular interactions. The protonated nitrogen atom forms a strong N–H⋯O hydrogen bond to one of the tosylate oxygens. Only one of the water molecule hydrogens acts as a donor in an O–H⋯O hydrogen bond. The tosylate oxygens act as acceptors in a number of C–H⋯O hydrogen bonds. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.


2016 ◽  
Vol 31 (2) ◽  
pp. 135-141 ◽  
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of paliperidone has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Paliperidone crystallizes in space group P21/n (# 14) with a = 14.151 58(6), b = 21.537 80(9), c = 6.913 26(2) Å, β = 92.3176(2)°, V = 2105.396(13) Å3, and Z = 4. The unit-cell volume at 295 K is 1.5% larger than at 200 K, but the expansion is anisotropic; the b-axis is nearly constant at the two temperatures, while the a- and c-axes expand by 0.71 and 0.87%, respectively. There is only one significant hydrogen (H)-bond in the crystal structure. This H-bond is between the hydroxyl group O31–H58 and the ketone oxygen O25. The result is a chain along the c-axis with graph set C1,1(7). In addition to this H-bond, the molecular packing is dominated by van der Waals attractions. The powder pattern is included in the Powder Diffraction File™ as entry 00-064-1497.


2021 ◽  
pp. 1-6
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of loteprednol etabonate Form II has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Loteprednol etabonate Form II crystallizes in the space group P21 (#4) with a = 11.96312(6), b = 14.91862(5), c = 6.75715(3) Å, β = 94.1584(3)°, V = 1202.796(6) Å3, and Z = 2. The crystal structure is characterized by herringbone layers in the ab-plane. The anisotropic displacement ellipsoid of the Cl atom is not oriented in a way which corresponds to a chemically sensible motion of this atom. The sample suffered damage in the X-ray beam, probably involving photolysis of the C–Cl bond. The most prominent hydrogen bond is the O–H⋯O hydrogen bond between the hydroxyl group and the carbonyl group of the steroid A ring. This hydrogen bond links the molecules into C1,1(9) chains along the b-axis. The powder pattern is included in the Powder Diffraction File™ (PDF®) as entry 00-066-1602; this study will allow inclusion of the atomic coordinates to the PDF entry.


2021 ◽  
pp. 1-7
Author(s):  
Nilan V. Patel ◽  
Joseph T. Golab ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of tamsulosin hydrochloride has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Tamsulosin hydrochloride crystallizes in space group P21 (#4) with a = 7.62988(2), b = 9.27652(2), c = 31.84996(12) Å, β = 93.2221(2)°, V = 2250.734(7) Å3, and Z = 4. In the crystal structure, two arene rings are connected by a carbon chain oriented roughly parallel to the c-axis. The crystal structure is characterized by two slabs of tamsulosin hydrochloride molecules perpendicular to the c-axis. As expected, each of the hydrogens on the protonated nitrogen atoms makes a strong hydrogen bond to one of the chloride anions. The result is to link the cations and anions into columns along the b-axis. One hydrogen atom of each sulfonamide group also makes a hydrogen bond to a chloride anion. The other hydrogen atom of each sulfonamide group forms bifurcated hydrogen bonds to two ether oxygen atoms. The powder pattern is included in the Powder Diffraction File™ as entry 00-065-1415.


Sign in / Sign up

Export Citation Format

Share Document