Crystal structure of levocetirizine dihydrochloride Form I, C21H27ClN2O3Cl2

2021 ◽  
pp. 1-9
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of levocetirizine dihydrochloride Form I has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Levocetirizine dihydrochloride Form I apparently crystallizes in space group P21/n (#14) with a = 24.1318(21), b = 7.07606(9), c = 13.5205(7) Å, β = 97.9803(4)°, V = 2286.38(12) Å3, and Z = 4. The crystal structure consists of interleaved double columns of cations and anions along the short b-axis. The hydrogen bonds link the cations and anions along this axis. Each protonated nitrogen atom forms a strong N–H⋯Cl hydrogen bond to one of the chloride anions. The carboxylic acid group also forms an H-bond to Cl56, resulting in a ring with a graph set R1,2(10). The centrosymmetric P21/n model for the crystal structure of levocetirizine dihydrochloride is better than the non-centrosymmetric P21 model, even though levocetirizine is a chiral molecule; the sample exhibits weak second-harmonic generation, and three weak peaks which violate the glide plane are observed. The centrosymmetric model is better by statistical, graphical, and energetic measures, as well as by chemical reasonableness. To accommodate the chiral molecule in a centrosymmetric space group, the chiral central carbon atom was disordered over two half-occupied positions, so that each cation site could be occupied by a cation of the correct chirality. A powder pattern from a Le Bail extraction of this synchrotron data set is included in the Powder Diffraction File™ as entry 00-066-1627.

2021 ◽  
pp. 1-8
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of tofacitinib dihydrogen citrate (tofacitinib citrate) has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Tofacitinib dihydrogen citrate crystallizes in space group P212121 (#19) with a = 5.91113(1), b = 12.93131(3), c = 30.43499(7) Å, V = 2326.411(6) Å3, and Z = 4. The crystal structure consists of corrugated layers perpendicular to the c-axis. Within the layers, cation⋯anion and anion⋯anion hydrogen bonds link the fragments into a two-dimensional network parallel to the ab-plane. Between the layers, there are only van der Waals contacts. A terminal carboxylic acid group in the citrate anion forms a strong charge-assisted hydrogen bond to the ionized central carboxylate group. The other carboxylic acid acts as a donor to the carbonyl group of the cation. The citrate hydroxy group forms an intramolecular charge-assisted hydrogen bond to the ionized central carboxylate. Two protonated nitrogen atoms in the cation act as donors to the ionized central carboxylate of the anion. These hydrogen bonds form a ring with the graph set symbol R2,2(8). The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).


Crystals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 464 ◽  
Author(s):  
Hebboul ◽  
Galez ◽  
Benbertal ◽  
Beauquis ◽  
Mugnier ◽  
...  

Synthesis and characterization of anhydrous LiZn(IO3)3 powders prepared from an aqueous solution are reported. Morphological and compositional analyses were carried out by using scanning electron microscopy and energy-dispersive X-ray measurements. The synthesized powders exhibited a needle-like morphology after annealing at 400 °C. A crystal structure for the synthesized compound was proposed from powder X-ray diffraction and density-functional theory calculations. Rietveld refinements led to a monoclinic structure, which can be described with space group P21, number 4, and unit-cell parameters a = 21.874(9) Å, b = 5.171(2) Å, c = 5.433(2) Å, and  = 120.93(4)°. Density-functional theory calculations supported the same crystal structure. Infrared spectra were also collected, and the vibrations associated with the different modes were discussed. The non-centrosymmetric space group determined for this new polymorph of LiZn(IO3)3, the characteristics of its infrared absorption spectrum, and the observed second-harmonic generation suggest it is a promising infrared non-linear optical material.


Author(s):  
Alagappa Rammohan ◽  
James A. Kaduk

The crystal structure of dirubidium hydrogen citrate, 2Rb+·HC6H5O72−, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The un-ionized carboxylic acid group forms helical chains of very strong hydrogen bonds (O...O ∼ 2.42 Å) along thebaxis. The hydroxy group participates in a chain of intra- and intermolecular hydrogen bonds along thecaxis. These hydrogen bonds result in corrugated hydrogen-bonded layers in thebcplane. The Rb+cations are six-coordinate, and share edges and corners to form layers in theabplane. The interlayer contacts are composed of the hydrophobic methylene groups.


2019 ◽  
Vol 34 (3) ◽  
pp. 267-278
Author(s):  
Austin M. Wheatley ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structures of cefdinir and cefdinir sesquihydrate have been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Cefdinir crystallizes in space group P21 (#4) with a = 5.35652(4), b = 19.85676(10), c = 7.57928(5) Å, β = 97.050(1) °, V = 800.061(6) Å3, and Z = 2. Cefdinir sesquihydrate crystallizes in space group C2 (#5) with a = 23.98775(20), b = 5.01646(3), c = 15.92016(12) Å, β = 109.4470(8) °, V = 1806.438(16) Å3, and Z = 4. The cefdinir molecules in the anhydrous crystal structure and sesquihydrate have very different conformations. The two conformations are similar in energy. The hydrogen bonding patterns are very different in the two structures, and the sesquihydrate is more stable than expected from the sum of the energies of cefdinir and cefdinir sesquihydrate, the result of additional hydrogen bonding. The powder patterns are included in the Powder Diffraction File™ as entries 00-066-1604 (cefdinir) and 00-066-1605 (cefdinir sesquihydrate).


2019 ◽  
Vol 35 (1) ◽  
pp. 34-40
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of bisoprolol fumarate Form I has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Bisoprolol fumarate Form I crystallizes in space group P-1 (#2) with a = 8.165 70(5) Å, b = 8.516 39(12) Å, c = 16.751 79(18) Å, α = 89.142(1)°, β = 78.155(1)°, γ = 81.763(1)°, V = 1128.265(10) Å3, and Z = 2. The neutral side chain of the bisoprolol cation is probably disordered. The cation and anion are linked by N–H⋯O and O–H⋯O hydrogen bonds. The cations are also linked by N–H⋯O hydrogen bonds. The result is alternating layers of hydrophilic and hydrophobic layers parallel to the ab-plane. The density of the structure is relatively low at 1.130 g cm−3, but there are no obvious voids in the structure. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1625.


2021 ◽  
pp. 1-3
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of varenicline hydrogen tartrate Form B (Chantix®) has been refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Varenicline hydrogen tartrate Form B crystallizes in space group P212121 (#19) with a = 7.07616(2), b = 7.78357(2), c = 29.86149(7) Å, V = 1644.706(6) Å3, and Z = 4. The hydrogen bonds were identified and quantified. Hydrogen bonds link the cations and anions in zig-zag chains along the b-axis. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).


2010 ◽  
Vol 25 (4) ◽  
pp. 322-328 ◽  
Author(s):  
P. S. Whitfield ◽  
L. D. Mitchell ◽  
Y. Le Page ◽  
J. Margeson ◽  
A. C. Roberts

The crystal structure of the mineral strontiodresserite, (Sr,Ca)Al2(CO3)2(OH)4⋅H2O, from the Francon Quarry, Montreal, Quebec, Canada, has been solved from laboratory powder diffraction data using a combination of charge-flipping and simulated annealing methods. The structure is orthorhombic in space group Pnma with a=16.0990(7), b=5.6133(3), and c=9.1804(4) Å (Z=4) and the framework of the mineral is isostructural with that of dundasite. The strontium has a coordination number of 9 and the carbonate anions form a bridge between the SrO9 polyhedra and AlO6 octahedra. The water molecule lies in a channel that runs parallel to the b axis. An ordered network of hydrogen atoms could be uniquely determined from crystal-chemical principles in the channels of strontiodresserite. Ab initio density functional theory (DFT) energy minimization of the whole structure gave results in full agreement with X-ray refinement results for nonhydrogen atoms. The stability of this model (as well as that of the corresponding model of dundasite) in the proposed Pnma space group was tested by DFT optimization in space group P1 of random small distortions of this structure. This test confirms that both minerals are isostructural, including their hydrogen-bond networks.


Author(s):  
Zoulikha Hebboul ◽  
Christine Galez ◽  
Djamal Benbertal ◽  
Sandrine Beauquis ◽  
Yannick Mugnier ◽  
...  

Synthesis and characterization of anhydrous LiZn(IO3)3 powders prepared from an aqueous solution are reported. Morphological and compositional analyses were carried out by scanning electron microscopy and energy dispersive X-ray measurements. The synthesized powders exhibit a needle-like morphology after annealing at 400°C. A crystal structure for the synthesized compound has been proposed from powder X-ray diffraction and density-functional theory calculations. Rietveld refinements led to a monoclinic structure, which can be described with space group P21, number 4, and unit-cell parameters a = 21.874(9) Å, b = 5.171(2) Å, c = 5.433(2) Å, and beta = 120.93(4)º. Density-functional theory calculations supported the same crystal structure. Infrared spectra were also collected and the vibrations associated to the different modes discussed. The non-centrosymmetric space group determined for this new polymorph of LiZn(IO3)3, the characteristics of its infrared absorption spectrum, and the observed second harmonic generation suggest a promising infrared non-linear optical material.


2021 ◽  
pp. 1-6
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of pomalidomide Form I has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Pomalidomide Form I crystallizes in the space group P-1 (#2) with a = 7.04742(9), b = 7.89103(27), c = 11.3106(6) Å, α = 73.2499(13), β = 80.9198(9), γ = 88.5969(6)°, V = 594.618(8) Å3, and Z = 2. The crystal structure is characterized by the parallel stacking of planes parallel to the bc-plane. Hydrogen bonds link the molecules into double layers also parallel to the bc-plane. Each of the amine hydrogen atoms acts as a donor to a carbonyl group in an N–H⋯O hydrogen bond, but only two of the four carbonyl groups act as acceptors in such hydrogen bonds. Other carbonyl groups participate in C–H⋯O hydrogen bonds. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).


2021 ◽  
pp. 1-7
Author(s):  
Nilan V. Patel ◽  
Joseph T. Golab ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of tamsulosin hydrochloride has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Tamsulosin hydrochloride crystallizes in space group P21 (#4) with a = 7.62988(2), b = 9.27652(2), c = 31.84996(12) Å, β = 93.2221(2)°, V = 2250.734(7) Å3, and Z = 4. In the crystal structure, two arene rings are connected by a carbon chain oriented roughly parallel to the c-axis. The crystal structure is characterized by two slabs of tamsulosin hydrochloride molecules perpendicular to the c-axis. As expected, each of the hydrogens on the protonated nitrogen atoms makes a strong hydrogen bond to one of the chloride anions. The result is to link the cations and anions into columns along the b-axis. One hydrogen atom of each sulfonamide group also makes a hydrogen bond to a chloride anion. The other hydrogen atom of each sulfonamide group forms bifurcated hydrogen bonds to two ether oxygen atoms. The powder pattern is included in the Powder Diffraction File™ as entry 00-065-1415.


Sign in / Sign up

Export Citation Format

Share Document