Postnatal development of neuropeptide Y-like immunoreactivity in area 17 of normal and visually deprived rhesus monkeys

1989 ◽  
Vol 2 (3) ◽  
pp. 315-328 ◽  
Author(s):  
Margarete Tigges ◽  
Johannes Tigges ◽  
John K. McDonald ◽  
Michael Slattery ◽  
Alcides Fernandes

AbstractImmunocytochemical methods were used to examine neuropeptide Y (NPY) immunoreactive neurons and fibers in area 17 of rhesus monkeys during the first year of life. NPY-immunoreactive (+) neurons are nonpyramidal cells which are either multipolar, bipolar, or bitufted in shape. They occur most frequently in layer 6 and the subjacent white matter, are sparser in the supragranular layers, and absent from layer 4C. Labeled somata in the supragranular layers are smaller compared to those in layer 6 and the white matter. A typical axon originates from the NPY+ soma or from a primary dendrite and frequently is varicose. Distribution and morphologies of NPY+ neurons in area 17 of infants are similar to those of adult monkeys. Thus, it seems that NPY+ neurons in rhesus monkeys are mature from birth. NPY+ fibers occur in area 17 from birth; however, they differ in density and distribution from those of older infant and adult monkeys. At birth, a prominent fiber plexus is found in the deepest part of layer 1, and another in the white matter. Immunoreactive processes are sparse in the remaining cortical gray, except for some vertical fibers extending from pia to white matter. By 4 months of age, labeled fibers form a coarse network in layers 2, 3, 5, and 6. In addition, a distinct plexus extends through layers 4B, 4A, and the lowest aspect of layer 3. Also, a thin immunoreactive fiber band is found at the bottom of layer 4C. In the remainder of layer 4C, NPY+ fibers are scant. The supragranular layers also exhibit a unique immunoreactive “snarl” of fibers. Increases in density of NPY+ processes in the older infants are gradual so that between 7 and 13 months of age, NPY+ fibers appear to have achieved adultlike densities. These observations indicate that NPY+ fibers in area 17 of newborn rhesus monkeys undergo postnatal maturation which reaches a plateau around 4 months of age. After monocular visual deprivation from birth to 4 months of age, either by eyelid suture or by occlusion with an opaque contact lens, density and distribution of NPY+ neurons and fibers, including snarls, appear similar to those of age-matched undeprived infants. Thus, disruption of the normal binocular input does not seem to arrest the maturation of the NPY system in area 17 of rhesus monkeys during a sensitive period of early postnatal development.

Development ◽  
1993 ◽  
Vol 117 (2) ◽  
pp. 535-541 ◽  
Author(s):  
M.H. Curfs ◽  
A.A. Gribnau ◽  
P.J. Dederen

In the rat cervical spinal cord the corticospinal projection on motoneurons either direct or indirect (via interneurons) comes about postnatally making it accessible for experimental research. Therefore, the postnatal developmental changes of motoneurons and in particular their dendritic fields were examined. Motoneurons innervating the two antagonistic muscles in the distal forepaw, the m. flexor digitorum profundus and the m. extensor digitorum communis, were retrogradely labelled by intramuscular injections of cholera toxin subunit B conjugated with horseradish peroxidase in rats of various postnatal ages. Following a 48–72 hour survival period the motoneurons and their dendritic fields were studied in the seventh and eighth cervical spinal cord segments. Both the number and the position of motoneurons were found to remain constant throughout postnatal development. Extensor motoneurons were positioned dorsolaterally in the ventral horn at the border of grey and white matter, flexor motoneurons were in general medial to extensor motoneurons. The results on the dendritic field demonstrate firstly, that during postnatal development the extension of the dendrites of both flexor and extensor motoneurons changes from spreading out in all directions at postnatal day 2 to spreading in only a few, specific directions from postnatal day 21 onwards, with the restriction that both motoneuron pools follow a different time scale to achieve this. Secondly, both pools have a temporal dendritic component extending into the white matter of the lateral funiculus.(ABSTRACT TRUNCATED AT 250 WORDS)


2008 ◽  
pp. 507-515
Author(s):  
J Švíglerová ◽  
J Kuncová ◽  
L Nalos ◽  
J Slavíková ◽  
M Štengl

The contribution of the sympathetic innervation to the postnatal development of cardiac contractility remains unclear. In this study, the postnatal maturation of cardiac contractility was compared in control rats and rats after chemical sympathectomy. The chemical sympathectomy was induced by administration of 6-hydroxydopamine to newborn rats. At days 20, 40 and 60 of postnatal life, the contractile parameters and concentrations of sympathetic neurotransmitters were measured in both right and left ventricles. In rats with chemical sympathectomy, concentrations of norepinephrine were reduced almost completely in both ventricles at all time points. The contractility of the left ventricle papillary muscles was substantially decreased at all time points. In contrast, the contractility of the right ventricle papillary muscles was decreased only transiently, showing a recovery at day 60 regardless of the permanently decreased concentration of norepinephrine. The concentration of neuropeptide Y, another neurotransmitter present in sympathetic nerves, showed the same developmental trend as contractility: permanent reduction in the left ventricle, transient reduction with a recovery at day 60 in the right ventricle. The data indicate that the sympathetic nervous system plays an important role in the postnatal development of cardiac contractility and neuropeptide Y may contribute to this effect.


2016 ◽  
Vol 116 (4) ◽  
pp. 1705-1714 ◽  
Author(s):  
Caitlin A. McMenamin ◽  
Laura Anselmi ◽  
R. Alberto Travagli ◽  
Kirsteen N. Browning

Prior immunohistochemical studies have demonstrated that at early postnatal time points, central vagal neurons receive both glycinergic and GABAergic inhibitory inputs. Functional studies have demonstrated, however, that adult vagal efferent motoneurons receive only inhibitory GABAergic synaptic inputs, suggesting loss of glycinergic inhibitory neurotransmission during postnatal development. The purpose of the present study was to test the hypothesis that the loss of glycinergic inhibitory synapses occurs in the immediate postnatal period. Whole cell patch-clamp recordings were made from dorsal motor nucleus of the vagus (DMV) neurons from postnatal days 1–30, and the effects of the GABAA receptor antagonist bicuculline (1–10 μM) and the glycine receptor antagonist strychnine (1 μM) on miniature inhibitory postsynaptic current (mIPSC) properties were examined. While the baseline frequency of mIPSCs was not altered by maturation, perfusion with bicuculline either abolished mIPSCs altogether or decreased mIPSC frequency and decay constant in the majority of neurons at all time points. In contrast, while strychnine had no effect on mIPSC frequency, its actions to increase current decay time declined during postnatal maturation. These data suggest that in early postnatal development, DMV neurons receive both GABAergic and glycinergic synaptic inputs. Glycinergic neurotransmission appears to decline by the second postnatal week, and adult neurons receive principally GABAergic inhibitory inputs. Disruption of this developmental switch from GABA-glycine to purely GABAergic transmission in response to early life events may, therefore, lead to adverse consequences in vagal efferent control of visceral functions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Daria S. Kostyunina ◽  
Lin Zhang ◽  
Anastasia A. Shvetsova ◽  
Ekaterina K. Selivanova ◽  
Olga S. Tarasova ◽  
...  

AbstractMembrane transporters and their functional contribution in vasculature change during early postnatal development. Here we tested the hypothesis that the contribution of Cl− channels to arterial contraction declines during early postnatal development and this decline is associated with the trophic sympathetic influence. Endothelium‐denuded saphenous arteries from 1- to 2-week-old and 2- to 3-month-old male rats were used. Arterial contraction was assessed in the isometric myograph, in some experiments combined with measurements of membrane potential. mRNA and protein levels were determined by qPCR and Western blot. Sympathectomy was performed by treatment with guanethidine from the first postnatal day until 8–9-week age. Cl− substitution in the solution as well as Cl−-channel blockers (MONNA, DIDS) had larger suppressive effect on the methoxamine-induced arterial contraction and methoxamine-induced depolarization of smooth muscle cells in 1- to 2-week-old compared to 2- to 3-month-old rats. Vasculature of younger group demonstrated elevated expression levels of TMEM16A and bestrophin 3. Chronic sympathectomy increased Cl− contribution to arterial contraction in 2-month-old rats that was associated with an increased TMEM16A expression level. Our study demonstrates that contribution of Cl− channels to agonist-induced arterial contraction and depolarization decreases during postnatal development. This postnatal decline is associated with sympathetic nerves development.


2007 ◽  
Vol 28 (9) ◽  
pp. 1789-1795 ◽  
Author(s):  
J.H. Gilmore ◽  
W. Lin ◽  
I. Corouge ◽  
Y.S.K. Vetsa ◽  
J.K. Smith ◽  
...  

Endocrinology ◽  
2013 ◽  
Vol 154 (3) ◽  
pp. 1321-1336 ◽  
Author(s):  
Francisco Gaytan ◽  
Susana Sangiao-Alvarellos ◽  
María Manfredi-Lozano ◽  
David García-Galiano ◽  
Francisco Ruiz-Pino ◽  
...  

Abstract Lin28 (also termed Lin28a) and Lin28b are related RNA-binding proteins, involved in the control of microRNA synthesis, especially of the let-7 family, with putative functions in early (embryo) development. However, their roles during postnatal maturation remain ill defined. Despite the general assumption that Lin28 and Lin28b share similar targets and functions, conclusive demonstration of such redundancy is still missing. In addition, recent observations suggest a role of Lin28 proteins in mammalian reproduction, which is yet to be defined. We document herein the patterns of RNA expression and protein distribution of Lin28 and Lin28b in mouse testis during postnatal development and in a model of hypogonadotropic hypogonadism as a result of inactivation of the kisspeptin receptor, Gpr54. Lin28 and Lin28b mRNAs were expressed in mouse testis across postnatal maturation, but their levels disparately varied between neonatal and pubertal periods, with peak Lin28 levels in infantile testes and sustained elevation of Lin28b mRNA in young adult male gonads, where relative levels of let-7a and let-7b miRNAs were significantly suppressed. In addition, Lin28 peptides displayed totally different patterns of cellular distribution in mouse testis: Lin28 was located in undifferentiated and type-A1 spermatogonia, whereas Lin28b was confined to spermatids and interstitial Leydig cells. These profiles were perturbed in Gpr54 null mouse testis, which showed preserved but irregular Lin28 signal and absence of Lin28b peptide, which was rescued by administration of gonadotropins, mainly hCG (as super-agonist of LH). In addition, increased relative levels of Lin28, but not Lin28b, mRNA and of let-7a/let-7b miRNAs were observed in Gpr54 KO mouse testes. Altogether, our data are the first to document the divergent patterns of cellular distribution and mRNA expression of Lin28 and Lin28b in the mouse testis along postnatal maturation and their alteration in a model of congenital hypogonadotropic hypogonadism. Our findings suggest distinct functional roles of these two related, but not overlapping, miRNA-binding proteins in the male gonad.


Sign in / Sign up

Export Citation Format

Share Document