GAP-43 in the cat visual cortex during postnatal development

1990 ◽  
Vol 4 (6) ◽  
pp. 585-593 ◽  
Author(s):  
Helen McIntosh ◽  
Nigel Daw ◽  
David Parkinson

AbstractGAP-43 levels have been determined by immunoassay in cat visual cortex during postnatal development to test the idea that GAP-43 expression could be related to the duration of the critical period for plasticity. For comparison, GAP-43 levels have also been assayed in primary motor cortex, primary somatosensory cortex, and cerebellum at each age. GAP-43 levels were high in all regions at 5 d (with concentrations ranging from 7−10 ng;/μg protein) and then declined 60−80% by 60 d of age. After 60 d of age, GAP-43 concentrations in each region continued a slow decline to adult values, which ranged from 0.5−2 ng/μg protein. To test for the involvement of GAP-43 in ocular dominance plasticity during the critical period, the effect of visual deprivation on GAP-43 levels was investigated. Monocular deprivation for 2−7 d, ending at either 27 or 35 d of age, had no effect on total membrane levels of GAP-43. The concentrations of membrane-associated GAP-43 prior to 40 d of age correlate with events that occur during postnatal development of the cat visual cortex. However, the slow decline in membrane-associated GAP-43 levels after 40 d of age may be an index of relative plasticity remaining after the peak of the critical period.

1992 ◽  
Vol 67 (1) ◽  
pp. 197-202 ◽  
Author(s):  
N. W. Daw ◽  
K. Fox ◽  
H. Sato ◽  
D. Czepita

1. Cats were monocularly deprived for 3 mo starting at 8-9 mo, 12 mo, 15 mo, and several years of age. Single cells were recorded in both visual cortexes of each cat, and the ocular dominance and layer determined for each cell. Ocular dominance histograms were then constructed for layers II/III, IV, and V/VI for each group of animals. 2. There was a statistically significant shift in the ocular dominance for cells in layers II/III and V/VI for the animals deprived between 8-9 and 11-12 mo of age. There was a small but not statistically significant shift for cells in layer IV from the animals deprived between 8-9 and 11-12 mo of age, and for cells in layers V/VI from the animals deprived between 15 and 18 mo of age. There was no noticeable shift in ocular dominance for any other layers in any other group of animals. 3. We conclude that the critical period for monocular deprivation is finally over at approximately 1 yr of age for extragranular layers (layers II, III, V, and VI) in visual cortex of the cat.


2002 ◽  
Vol 88 (4) ◽  
pp. 1933-1940 ◽  
Author(s):  
Chris J. Beaver ◽  
Quentin S. Fischer ◽  
Qinghua Ji ◽  
Nigel W. Daw

We have previously shown that the protein kinase A (PKA) inhibitor, 8-chloroadenosine-3′,5′–monophosphorothioate (Rp-8-Cl-cAMPS), abolishes ocular dominance plasticity in the cat visual cortex. Here we investigate the effect of this inhibitor on orientation selectivity. The inhibitor reduces orientation selectivity in monocularly deprived animals but not in normal animals. In other words, PKA inhibitors by themselves do not affect orientation selectivity, nor does monocular deprivation by itself, but monocular deprivation in combination with a PKA inhibitor does affect orientation selectivity. This result is found for the receptive fields in both deprived and nondeprived eyes. Although there is a tendency for the orientation selectivity in the nondeprived eye to be higher than the orientation selectivity in the deprived eye, the orientation selectivity in both eyes is considerably less than normal. The result is striking in animals at 4 wk of age. The effect of the monocular deprivation on orientation selectivity is reduced at 6 wk of age and absent at 9 wk of age, while the effect on ocular dominance shifts is less changed in agreement with previous results showing that the critical period for orientation/direction selectivity ends earlier than the critical period for ocular dominance. We conclude that closure of one eye in combination with inhibition of PKA reduces orientation selectivity during the period that orientation selectivity is still mutable and that the reduction in orientation selectivity is transferred to the nondeprived eye.


2001 ◽  
Vol 18 (5) ◽  
pp. 811-820 ◽  
Author(s):  
CHRISTOPHER J. BEAVER ◽  
QINGHUA JI ◽  
NIGEL W. DAW

We compared the effect of 2 days of monocular vision on the ocular dominance of cells in the visual cortex of light-reared kittens with the effect in dark-reared kittens at 6, 9, and 14 weeks of age, and analyzed the results by layer. The size of the ocular-dominance shift declined with age in all layers in light-reared animals. There was not a large change in the ocular-dominance shift with age in dark-reared animals in any layer, suggesting that dark rearing largely keeps the cortex in the immature 6-week state until 14 weeks or longer, although there was a slight decrease in layers II, III, and IV, and a slight increase in layers V and VI. At 14 weeks, the difference between light- and dark-reared animals was smallest in layer IV, larger in layers II/III, and largest in layers V/VI, suggesting that dark rearing has a large effect on intracortical synapses and a small effect on geniculocortical synapses. There was a significant ocular-dominance shift in layer IV at 14 weeks of age in both light- animals and dark-reared animals, showing that the critical period for ocular-dominance plasticity is not ended at this age. While the ocular-dominance shift after 26 h of monocular deprivation in 6-week animals was similar in light- and dark-reared animals, after 14 h it was smaller in dark-reared animals, showing that ocular-dominance changes occur more slowly in dark-reared animals at this age, in agreement with Mower (1991). Increases in selectivity for axis of movement after 26 h of monocular vision were seen in dark-reared animals at 6 weeks of age, but not at 9 or 14 weeks of age, showing that the critical period for axial selectivity ends earlier than the critical period for ocular dominance in dark-reared animals, as it does in light-reared animals.


2017 ◽  
Vol 372 (1715) ◽  
pp. 20160159 ◽  
Author(s):  
Irina Erchova ◽  
Asta Vasalauskaite ◽  
Valentina Longo ◽  
Frank Sengpiel

Dark rearing is known to delay the time course of the critical period for ocular dominance plasticity in the visual cortex. Recent evidence suggests that a period of dark exposure (DE) may enhance or reinstate plasticity even after closure of the critical period, mediated through modification of the excitatory–inhibitory balance and/or removal of structural brakes on plasticity. Here, we investigated the effects of a week of DE on the recovery from a month of monocular deprivation (MD) in the primary visual cortex (V1) of juvenile mice. Optical imaging of intrinsic signals revealed that ocular dominance in V1 of mice that had received DE recovered slightly more quickly than of mice that had not, but the level of recovery after three weeks was similar in both groups. Two-photon calcium imaging showed no significant difference in the recovery of orientation selectivity of excitatory neurons between the two groups. Parvalbumin-positive (PV+) interneurons exhibited a smaller ocular dominance shift during MD but again no differences in subsequent recovery. The percentage of PV+ cells surrounded by perineuronal nets, a structural brake on plasticity, was lower in mice with than those without DE. Overall, DE causes a modest enhancement of mouse visual cortex plasticity. This article is part of the themed issue ‘Integrating Hebbian and homeostatic plasticity’.


2018 ◽  
Vol 35 ◽  
Author(s):  
TAKAO K. HENSCH ◽  
ELIZABETH M. QUINLAN

AbstractThe shift in ocular dominance (OD) of binocular neurons induced by monocular deprivation is the canonical model of synaptic plasticity confined to a postnatal critical period. Developmental constraints on this plasticity not only lend stability to the mature visual cortical circuitry but also impede the ability to recover from amblyopia beyond an early window. Advances with mouse models utilizing the power of molecular, genetic, and imaging tools are beginning to unravel the circuit, cellular, and molecular mechanisms controlling the onset and closure of the critical periods of plasticity in the primary visual cortex (V1). Emerging evidence suggests that mechanisms enabling plasticity in juveniles are not simply lost with age but rather that plasticity is actively constrained by the developmental up-regulation of molecular ‘brakes’. Lifting these brakes enhances plasticity in the adult visual cortex, and can be harnessed to promote recovery from amblyopia. The reactivation of plasticity by experimental manipulations has revised the idea that robust OD plasticity is limited to early postnatal development. Here, we discuss recent insights into the neurobiology of the initiation and termination of critical periods and how our increasingly mechanistic understanding of these processes can be leveraged toward improved clinical treatment of adult amblyopia.


1997 ◽  
Vol 14 (1) ◽  
pp. 111-123 ◽  
Author(s):  
Rosita Siciliano ◽  
Gigliola Fontanesi ◽  
Fiorella Casamenti ◽  
Nicoletta Berardi ◽  
Paola Bagnoli ◽  
...  

AbstractIn the rat, visual cortical cells develop their functional properties during a period termed as critical period, which is included between eye opening, i.e.˘postnatal day (PD) 15, and PD40. The present investigation was aimed at studying the influence of cortical cholinergic afferents from the basal forebrain (BF) on the development of functional properties of visual cortical neurons. At PD15, rats were unilaterally deprived of the cholinergic input to the visual cortex by stereotaxic injections of quisqualic acid in BF cholinergic nuclei projecting to the visual cortex. Cortical cell functional properties, such as ocular dominance, orientation selectivity, receptive-field size, and cell responsiveness were then assessed by extracellular recordings in the visual cortex ipsilateral to the lesioned BF both during the critical period (PD30) and after its end (PD45). After the recording session, the rats were sacrificed and the extent of both cholinergic lesion in BF and cholinergic depletion in the visual cortex was determined. Our results show that lesion of BF cholinergic nuclei transiently alters the ocular dominance of visual cortical cells while it does not affect the other functional properties tested. In particular, in lesioned animals recorded during the critical period, a higher percentage of visual cortical cells was driven by the contralateral eye with respect to normal animals. After the end of the critical period, the ocular dominance distribution of animals with cholinergic deafferentation was not significantly different from that of controls. Our results suggest the possibility that lesions of BF cholinergic neurons performed during postnatal development only transiently interfere with cortical competitive processes.


1991 ◽  
Vol 16 ◽  
pp. 96
Author(s):  
Nobuko Mataga ◽  
Kazuyuki Imamura ◽  
Yasuyoshi Watanabe

2015 ◽  
Vol 112 (41) ◽  
pp. 12852-12857 ◽  
Author(s):  
Michael S. Sidorov ◽  
Eitan S. Kaplan ◽  
Emily K. Osterweil ◽  
Lothar Lindemann ◽  
Mark F. Bear

A feature of early postnatal neocortical development is a transient peak in signaling via metabotropic glutamate receptor 5 (mGluR5). In visual cortex, this change coincides with increased sensitivity of excitatory synapses to monocular deprivation (MD). However, loss of visual responsiveness after MD occurs via mechanisms revealed by the study of long-term depression (LTD) of synaptic transmission, which in layer 4 is induced by acute activation of NMDA receptors (NMDARs) rather than mGluR5. Here we report that chronic postnatal down-regulation of mGluR5 signaling produces coordinated impairments in both NMDAR-dependent LTD in vitro and ocular dominance plasticity in vivo. The data suggest that ongoing mGluR5 signaling during a critical period of postnatal development establishes the biochemical conditions that are permissive for activity-dependent sculpting of excitatory synapses via the mechanism of NMDAR-dependent LTD.


Sign in / Sign up

Export Citation Format

Share Document