Similarities and differences among inner retinal neurons revealed by the expression of reporter transgenes controlled by Brn-3a, Brn-3b, and Brn-3c promotor sequences

1996 ◽  
Vol 13 (5) ◽  
pp. 955-962 ◽  
Author(s):  
Mengqing Xiang ◽  
Lijuan Zhou ◽  
Jeremy Nathans

AbstractBrn-3a, Brn-3b, and Brn-3c are highly homologous POU-domain transcription factors that are expressed in subsets of retinal ganglion cells. From each of the mouse Brn-3 genes, a DNA segment ranging in size from 4.6 to 13.4 kb and located immediately upstream of the start site of translation was joined to a human placental alkaline phosphatase (AP) reporter cDNA. Following the introduction of each construct into the mouse germline, a total of 19 transgenic lines were obtained, of which 16 expressed the AP reporter in the retina. Unexpectedly, at least 14 of the 16 expressing lines showed AP activity in subsets of amacrine cells, and these subsets typically differed among mouse lines injected with the same construct. Transgene expression was also found in ganglion cells in four lines and bipolar cells in seven lines. In all cases AP activity was confined to cells in the inner nuclear layer and the ganglion cell layer. The expression of Brn-3 transgenes in multiple cell types in the inner retina is reminiscent of earlier experiments in which visual pigment transgenes were found to be expressed in multiple cell types in the outer retina. Taken together, these observations suggest that anatomically and/or functionally related retinal neurons contain partially overlapping transcriptional regulatory specificities.

1975 ◽  
Vol 38 (1) ◽  
pp. 53-71 ◽  
Author(s):  
K. Naka ◽  
N. R. Garraway

The morphology of the catfish horizontal cells is comparable to that in other fish retinas. The external horizontal cells contact cone receptors and are stellate in shape; the intermediate horizontal cells are even more so and contact rod receptors. The internal horizontal cells constitute the most proximal layer of the inner nuclear layer and may possibly be, in reality, extended processes from the other two horizontal cell types. Bipolar cells resemble those in other teleost retinas: the size and shape of their dendritic tree encompass a continuous spectrum ranging from what is known as the small to the large bipolar cells. The accepted definition of amacrine cells is sufficiently vague to justify our originating a more descriptive and less inferential name for the (axonless) neurons in the inner nuclear layer which radiate processes throughout the inner synaptic layer. These starbust and spaghetti cells vary considerably in the character and extent of their dendritic spread, but correlates exist in other vertebrate retinas. Ganglion cells are found not only in the classical ganglion layer but displaced into the inner nuclear layer as well. Several types can be distinguished on the basis of cell geometry and by the properties of their dendritic tree. Not all of the categorization corresponds with previous descriptions; our findings suggest that some reorganization may be necessary in the accepted classification of cells in the proximal areas of the vertebrate retina. A subtle yet remarkable pattern underlies the entire structure of the catfish retina; there exists a definite gradient of size within a particular class of cells, and of configuration among the subclasses of a specific cell type. It remains to be seen if these morphological spectra bear any functional consequences. The fact that the structure of the catfish retina most closely resembles those of other phylogenetically ancient animals, such as the skate and the dogfish shark, testifies to its primitive organization; morphological and functional mechanisms discernible in this simple system may, therefore, be applicable to the retinas of higher ordered vertebrates.


1975 ◽  
Vol 38 (1) ◽  
pp. 72-91 ◽  
Author(s):  
K. Naka ◽  
T. Otsuka

In this study the morphological origins of the responses from the catfish retinal neurons evoked by step inputs were determined by injecting intracellularly a dye, Procion yellow. A method was devised to view the dye-injected neurons in flat mount to study their dendritic expansion; later the same neurons could be sectioned radially to locate the levels of their somata or dendritic expansion. The results of this study show the inherent danger of identifying dye-injected neurons only in a radial or tangential view. Bipolar cells could be identified functionally without any ambiguity by changing widely the stimulus parameters, because the stimulation of their receptive-field center and surround gave rise to responses of opposing polarity. We found no exception to this rule. The neurons in the proximal layers produced a large variety of responses which could not be segregated into two such classes as the amacrine and ganglion cells. In this part II they were classified into three broad categories: neurons giving rise to sustained, transient, and spiking responses. The demarcation among the three types, morphologywise and functionwise, was vague and not well established. The sustained responses were recoreded from the starburst and spaghetti neurons (part I (9)) which correspond to Ramon y Cajal's (2) amacrine cells. The transient responses, whose patterns were largely invariant of the changes in the stimulus parameters, were recorded from a class of neurons with spindle-shaped somata in the INL. We do not know whether they had axons or not, but we will not be surprised if a future study defines them as a class of ganglion cells. Responses with or without spike discharges were recorded from a class of neurons which were identified as ganglion cells. Observations made on a large number of Procion-injected neurons in both flat-mount preparations and radial sections show that finer dendritic arborizations were not seen in the dye-injected neurons although the presence of such branches was proved in the Golgi preparations. Probably this was due to the weak contrast of the Procion-injected cell against the tissue background, rather than the failure of the dye to diffuse into finer branches. We recognize the severe difficulty involved in the traditional approach of identifying a class of neurons based on typical but subjectively selected functional and structural samples. Neurons have to be classified statistically according to their (quantitative) parameters. (cont'd)


1999 ◽  
Vol 16 (6) ◽  
pp. 1105-1114 ◽  
Author(s):  
PU QIN ◽  
ROBERTA G. POURCHO

AMPA-selective glutamate receptors play a major role in glutamatergic neurotransmission in the retina and are expressed in a variety of neuronal subpopulations. In the present study, immunocytochemical techniques were used to visualize the distribution of GluR2 and GluR4 subunits in the cat retina. Results were compared with previous localizations of GluR1 and GluR2/3. Staining for GluR2 was limited to a small number of amacrine and ganglion cells whereas GluR4 staining was present in A-type horizontal cells, many amacrine cells including type AII amacrine cells, and the majority of the cells in the ganglion cell layer. Analysis of synaptic relationships in the outer plexiform layer showed the GluR4 subunit to be concentrated at the contacts of cone photoreceptors with A-horizontal cells. In the inner plexiform layer, both GluR2 and GluR4 were postsynaptic to cone bipolar cells at dyad contacts although GluR2 staining was limited to one of the postsynaptic elements whereas GluR4 immunoreactivity was often seen in both postsynaptic elements. Unlike GluR2, GluR4 was also postsynaptic to rod bipolar cells where it could be visualized in processes of AII amacrine cells. The data indicate that GluR3 and GluR4 subunits are colocalized in a number of cell types including A-type horizontal cells, AII amacrine cells, and alpha ganglion cells, but whether they are combined in the same multimeric receptors remains to be determined.


2012 ◽  
Vol 29 (1) ◽  
pp. 51-60 ◽  
Author(s):  
JONATHAN B. DEMB ◽  
JOSHUA H. SINGER

AbstractAmacrine cells represent the most diverse class of retinal neuron, comprising dozens of distinct cell types. Each type exhibits a unique morphology and generates specific visual computations through its synapses with a subset of excitatory interneurons (bipolar cells), other amacrine cells, and output neurons (ganglion cells). Here, we review the intrinsic and network properties that underlie the function of the most common amacrine cell in the mammalian retina, the AII amacrine cell. The AII connects rod and cone photoreceptor pathways, forming an essential link in the circuit for rod-mediated (scotopic) vision. As such, the AII has become known as the rod–amacrine cell. We, however, now understand that AII function extends to cone-mediated (photopic) vision, and AII function in scotopic and photopic conditions utilizes the same underlying circuit: AIIs are electrically coupled to each other and to the terminals of some types of ON cone bipolar cells. The direction of signal flow, however, varies with illumination. Under photopic conditions, the AII network constitutes a crossover inhibition pathway that allows ON signals to inhibit OFF ganglion cells and contributes to motion sensitivity in certain ganglion cell types. We discuss how the AII’s combination of intrinsic and network properties accounts for its unique role in visual processing.


1980 ◽  
Vol 43 (3) ◽  
pp. 807-831 ◽  
Author(s):  
G. W. Davis ◽  
K. Naka

1. Receptive-field profiles of catfish (Ictalurus punctatus) retinal neurons were produced by a moving single bar or a moving random grating, which was swept across the cell's receptive field at a constant speed. 2. Bipolar cells form either an on- or an off-center biphasic field and are approximately linear in time and space. 3. Type-C or transient cells form predominantly monotonic receptive fields. We find two subclasses, one slow and the other fast transient cells. They can be identified functionally as well as morphologically. 4. Type-N or sustained cells form a biphasic receptive field, which is revealed by a bar of light. The monotonic field found by a spot or an annulus of light represents activity of the cell's field center. 5. There are two ganglion-cell types, small-field cells and large-field cells. It appears as if small-field cells copy signals in the bipolar cells and large-field cells, signals in the type-N cells. We suggest, however, that this observation represents the limitation imposed by our stimuli rather than an overall functional characteristic of catfish ganglion cells.


1994 ◽  
Vol 11 (2) ◽  
pp. 253-260 ◽  
Author(s):  
Norma Lake

AbstractThe content of taurine and the immunocytochemical localization of taurine and γ-aminobutyric acid (GABA) in the rat retina during postnatal development are described. The rat retina is immature at birth; about two-thirds of the cells are undifferentiated neuroblasts, and the taurine content per retina is approximately one-seventh of the adult value. Shortly after weaning the adult morphology and taurine content are attained. Expression of taurine immunoreactivity (taurine-IR) accompanies differentiation; in some cell types (ganglion and horizontal cells) this expression is transient, while in others (photoreceptors, bipolar, and a subpopulation of amacrine cells) it persists into the adult state. At birth, taurine-IR is localized mainly in cells in the position of ganglion cells, especially in their axons within the nerve fiber layer. This reactivity is soon lost from the somata, and disappears from the axons by 10 days of age. At 2 days of age, taurine-IR appeared additionally in somata of amacrine cells flanking the forerunner of the inner plexiform layer, and in growth cone-like processes of photoreceptors. At day 6, taurine-IR was marked in photoreceptor cell inner and outer segments, and in horizontal cells and their lateral processes. Taurine-IR was lost from horizontal cells and most amacrine cells around day 10, and appeared in bipolar cells, where it remained, with that in photoreceptors, into adulthood. Particularly striking was taurine-IR in large synaptic terminal-like processes close to the ganglion cell layer which were first seen around day 16. GABA immunoreactivity was never seen in photoreceptor or bipolar cells, was expressed transiently in horizontal cells at the same time as taurine-IR, but persisted in a subpopulation of amacrine cells and synaptic lamina in the inner plexiform layer and in some fine glial processes in the adult.


2004 ◽  
Vol 21 (2) ◽  
pp. 107-117 ◽  
Author(s):  
STEPHEN L. MILLS ◽  
KENNETH C. CATANIA

The retina consists of many parallel circuits designed to maximize the gathering of important information from the environment. Each of these circuits is comprised of a number of different cell types combined in modules that tile the retina. To a subterranean animal, vision is of relatively less importance. Knowledge of how circuits and their elements are altered in response to the subterranean environment is useful both in understanding processes of regressive evolution and in retinal processing itself. We examined common cell types in the retina of the naked mole-rat,Heterocephalus glaberwith immunocytochemical markers and retrograde staining of ganglion cells from optic nerve injections. The stains used show that the naked mole-rat eye has retained multiple ganglion cell types, 1–2 types of horizontal cell, rod bipolar and multiple types of cone bipolar cells, and several types of common amacrine cells. However, no labeling was found with antibodies to the dopamine-synthesizing enzyme, tyrosine hydroxylase. Although most of the well-characterized mammalian cell types are present in the regressive mole-rat eye, their structural organization is considerably less regular than in more sighted mammals. We found less precision of depth of stratification in the inner plexiform layer and also less precision in their lateral coverage of the retina. The results suggest that image formation is not very important in these animals, but that circuits beyond those required for circadian entrainment remain in place.


1992 ◽  
Vol 9 (3-4) ◽  
pp. 279-290 ◽  
Author(s):  
Dennis M. Dacey ◽  
Sarah Brace

AbstractIntracellular injections of Neurobiotin were used to determine whether the major ganglion cell classes of the macaque monkey retina, the magnocellular-projecting parasol, and the parvocellular-projecting midget cells showed evidence of cellular coupling similar to that recently described for cat retinal ganglion cells. Ganglion cells were labeled with the fluorescent dye acridine orange in an in vitro, isolated retina preparation and were selectively targeted for intracellular injection under direct microscopic control. The macaque midget cells, like the beta cells of the cat's retina, showed no evidence of tracer coupling when injected with Neurobiotin. By contrast, Neurobiotin-filled parasol cells, like cat alpha cells, showed a distinct pattern of tracer coupling to each other (homotypic coupling) and to amacrine cells (heterotypic coupling).In instances of homotypic coupling, the injected parasol cell was surrounded by a regular array of 3–6 neighboring parasol cells. The somata and proximal dendrites of these tracer-coupled cells were lightly labeled and appeared to costratify with the injected cell. Analysis of the nearest-neighbor distances for the parasol cell clusters showed that dendritic-field overlap remained constant as dendritic-field size increased from 100–400 μm in diameter.At least two amacrine cell types showed tracer coupling to parasol cells. One amacrine type had a small soma and thin, sparsely branching dendrites that extended for 1–2 mm in the inner plexiform layer. A second amacrine type had a relatively large soma, thick main dendrites, and distinct, axon-like processes that extended for at least 2–3 mm in the inner plexiform layer. The main dendrites of the large amacrine cells were closely apposed to the dendrites of parasol cells and may be the site of Neurobiotin transfer between the two cell types. We suggest that the tracer coupling between neighboring parasol cells takes place indirectly via the dendrites of the large amacrine cells and provides a mechanism, absent in midget cells, for increasing parasol cell receptive-field size and luminance contrast sensitivity.


2001 ◽  
Vol 18 (4) ◽  
pp. 559-570 ◽  
Author(s):  
B.E. REESE ◽  
M.A. RAVEN ◽  
K.A. GIANNOTTI ◽  
P.T. JOHNSON

The present study has examined the emergence of cholinergic stratification within the developing inner plexiform layer (IPL), and the effect of ablating the cholinergic amacrine cells on the formation of other stratifications within the IPL. The population of cholinergic amacrine cells in the ferret's retina was identified as early as the day of birth, but their processes did not form discrete strata until the end of the first postnatal week. As development proceeded over the next five postnatal weeks, so the positioning of the cholinergic strata shifted within the IPL toward the outer border, indicative of the greater ingrowth and elaboration of processes within the innermost parts of the IPL. To examine whether these cholinergic strata play an instructive role upon the development of other stratifications which form within the IPL, one-week-old ferrets were treated with l-glutamate in an attempt to ablate the population of cholinergic amacrine cells. Such treatment was shown to be successful, eliminating all of the cholinergic amacrine cells as well as the alpha retinal ganglion cells in the central retina. The remaining ganglion cell classes as well as a few other retinal cell types were partially reduced, while other cell types were not affected, and neither retinal histology nor areal growth was compromised in these ferrets. Despite this early loss of the cholinergic amacrine cells, which are eliminated within 24 h, other stratifications within the IPL formed normally, as they do following early elimination of the entire ganglion cell population. While these cholinergic amacrine cells are present well before other cell types have differentiated, apparently neither they, nor the ganglion cells, play a role in determining the depth of stratification for other retinal cell types.


2006 ◽  
Vol 95 (5) ◽  
pp. 2866-2877 ◽  
Author(s):  
Brian Hoffpauir ◽  
Emily McMains ◽  
Evanna Gleason

Nitric oxide (NO) is generated by multiple cell types in the vertebrate retina, including amacrine cells. We investigate the role of NO in the modulation of synaptic function using a culture system containing identified retinal amacrine cells. We find that moderate concentrations of NO alter GABAA receptor function to produce an enhancement of the GABA-gated current. Higher concentrations of NO also enhance GABA-gated currents, but this enhancement is primarily due to a substantial positive shift in the reversal potential of the current. Several pieces of evidence, including a similar effect on glycine-gated currents, indicate that the positive shift is due to an increase in cytosolic Cl−. This change in the chloride distribution is especially significant because it can invert the sign of GABA- and glycine-gated voltage responses. Furthermore, current- and voltage-clamp recordings from synaptic pairs of GABAergic amacrine cells demonstrate that NO transiently converts signaling at GABAergic synapses from inhibition to excitation. Persistence of the NO-induced shift in ECl− in the absence of extracellular Cl− indicates that the increase in cytosolic Cl− is due to release of Cl− from an internal store. An NO-dependent release of Cl− from an internal store is also demonstrated for rat hippocampal neurons indicating that this mechanism is not restricted to the avian retina. Thus signaling in the CNS can be fundamentally altered by an NO-dependent mobilization of an internal Cl− store.


Sign in / Sign up

Export Citation Format

Share Document