Localization of GABA- and GAD-like immunoreactivity in the turtle retina

1989 ◽  
Vol 3 (1) ◽  
pp. 9-20 ◽  
Author(s):  
Lawrence B. Hurd ◽  
William D. Eldred

Abstractγ-aminobutyric acid (GABA) has been reported to be an important neurotransmitter in the retinas of many species. This immunocytochemical study detailed the localization of antigens resembling GABA and glutamic acid decarboxylase (GAD, an enzyme involved in the synthesis of GABA), in retinal neurons in the turtle, Pseudemys scripta elegans. GABA-like immunoreactivity was present within somata in the inner and outer regions of the inner nuclear layer, within somata in the ganglion cell layer, and in processes in the outer plexiform layer, inner plexiform layer, and ganglion cell axon layer. GAD-like immunoreactivity was found in somata in the inner and outer regions of the inner nuclear layer and in processes in the inner and outer plexiform layers. Cell counts indicated more somata with GABA-like than GAD-like immunoreactivity in the inner nuclear layer. Double-label studies showed that every somata in the inner nuclear layer which had GAD-like immunoreactivity also had GABA-like immunoreactivity, but that many somata had only GABA-like immunoreactivity.The stratification of immunoreactivity within the inner plexiform layer was analyzed using a scanning densitometer. We described the strata within the inner plexiform layer such that S0 represented the inner nuclear layer/inner plexiform layer border and S100 represented the inner plexiform layer/ganglion cell layer border. Analysis of GAD-like labeling yielded seven distinct strata with peak densities at positions S8, S19, S28, S42, S59, S75, and S93. GABA-like labeling provided five distinct strata with peak densities at positions S17, S28, S67, S84, and S95. The strata with peaks of GABA-like immunoreactivity at S17 and S28 were in statistically identical locations to corresponding strata with GAD-like immunoreactivity. The strata with GABA-like immunoreactivity at S67, S84, and S95 did not have statistically identical peaks of correlated GAD-like immunoreactivity, although there were corresponding strata with GAD-like immunoreactivity nearby. Antiserum directed against GABA failed to produce labeled strata at positions corresponding to the strata with GAD-like immunoreactivity at S8 and S42.In summary, our results indicated that the antisera we used, which were directed against GABA and GAD, produced significantly different labeling in the inner nuclear layer, inner plexiform layer, and the ganglion cell body and axon layers of the turtle retina. Until the physiological significance of these differences is resolved, studies employing these markers to investigate the function of GABA in the turtle retina should be interpreted with caution.

1990 ◽  
Vol 5 (5) ◽  
pp. 441-452 ◽  
Author(s):  
Jens Nicolai Brink Larsen ◽  
Maurizio Bersani ◽  
James Olcese ◽  
Jens Juul Holst ◽  
Morten Møller

AbstractSpecific antisera, raised in rabbits, against somatostatin 1-14, somatostatin 1-28, the fragment 1-12 of somatostatin 1-28, and prosomatostatin 20-36 were used for immunohistochemistry and gel filtration of the rat retina.With all antisera, immunoreactive perikarya could be located in the inner nuclear and ganglion cell layers. In the inner nuclear layer, amacrine cells with processes extending predominantly into the first sublayer of the inner plexiform layer were observed. Some processes extended also to the ganglion cell layer. In addition, somatostatin-immunoreactive interplexiform cells were present in the inner nuclear layer.In the ganglion cell layer, perikarya were found located in the midperiphery and in the far periphery of the retina. The neurons located in the midperiphery of the retina possessed a round perikaryon from which processes could be followed going into the inner plexiform layer, where they dichotomized in the third and first sublayers. The perikarya in the far periphery of the retina near the ora serrata exhibited an ovoid-shaped cell body from which processes extended horizontally in a bipolar manner in the layer itself.By use of an [35S]-labeled antisense oligonucleotide probe, in situ hybridization of the rat retina showed the presence of perikarya in the inner nuclear layer and ganglion cell layer containing mRNA encoding for prosomatostatin.Gel filtration of the retinal extracts followed by radioimmunoassay showed the presence of somatostatin 1-14, the fragment 1-12 of somatostatin 1-28, and prosomatostatin 1-64. However, somatostatin 1-28 was not detected.The results obtained in this study verify the presence of somatostatin 1-14 in the rat retina located in perikarya and processes in the inner nuclear and ganglion cell layers. The positive in-situ hybridization signals show that the intraneuronal somatostatin immunoreactivity is due to synthesis of the peptide and not uptake in the neurons. The presence of the somatostatin propeptide and fragments of this propeptide, in both intraretinal perikarya and fibers, indicate a posttranslational modification of this neuropeptide in the perikarya and the processes as well.


Brain ◽  
2019 ◽  
Vol 142 (9) ◽  
pp. 2775-2786 ◽  
Author(s):  
Willemien A de Vries-Knoppert ◽  
Johannes C Baaijen ◽  
Axel Petzold

Abstract Conclusive evidence for existence of acquired retrograde axonal degeneration that is truly trans-synaptic (RTD) has not yet been provided for the human visual system. Convincing data rely on experimental data of lesions to the posterior visual pathways. This study aimed to overcome the limitations of previous human studies, namely pathology to the anterior visual pathways and neurodegenerative co-morbidity. In this prospective, longitudinal cohort retinal optical coherence tomography scans were acquired before and after elective partial temporal lobe resection in 25 patients for intractable epilepsy. Newly developed region of interest-specific, retinotopic areas substantially improved on conventional reported early treatment diabetic retinopathy study (ETDRS) grid-based optical coherence tomography data. Significant inner retinal layer atrophy separated patients with normal visual fields from those who developed a visual field defect. Acquired RTD affected the retinal nerve fibre layer, ganglion cell and inner plexiform layer and stopped at the level of the inner nuclear layer. There were significant correlations between the resected brain tissue volume and the ganglion cell layer region of interest (R = −0.78, P < 0.0001) and ganglion cell inner plexiform layer region of interest (R = −0.65, P = 0.0007). In one patient, damage to the anterior visual pathway resulted in occurrence of microcystic macular oedema as recognized from experimental data. In the remaining 24 patients with true RTD, atrophy rates in the first 3 months were strongly correlated with time from surgery for the ganglion cell layer region of interest (R = −0.74, P < 0.0001) and the ganglion cell inner plexiform layer region of interest (R = −0.51, P < 0.0001). The different time course of atrophy rates observed relate to brain tissue volume resection and suggest that three distinct patterns of retrograde axonal degeneration exist: (i) direct retrograde axonal degeneration; (ii) rapid and self-terminating RTD; and (iii) prolonged RTD representing a ‘penumbra’, which slowly succumbs to molecularly governed spatial cellular stoichiometric relationships. We speculate that the latter could be a promising target for neuroprotection.


1998 ◽  
Vol 15 (2) ◽  
pp. 377-387 ◽  
Author(s):  
BETH B. PETERSON ◽  
DENNIS M. DACEY

Ganglion cells with intraretinal axon collaterals have been described in monkey (Usai et al., 1991), cat (Dacey, 1985), and turtle (Gardiner & Dacey, 1988) retina. Using intracellular injection of horseradish peroxidase and Neurobiotin in in vitro whole-mount preparations of human retina, we filled over 1000 ganglion cells, 19 of which had intraretinal axon collaterals and wide-field, spiny dendritic trees stratifying in the inner half of the inner plexiform layer. The axons were smooth and thin (∼2 μm) and gave off thin (<1 μm), bouton-studded terminal collaterals that extended vertically to terminate in the outer half of the inner plexiform layer. Terminal collaterals were typically 3–300 μm in length, though sometimes as long as 700 μm, and were present in clusters, or as single branched or unbranched varicose processes with round or somewhat flattened lobular terminal boutons 1–2 μm in diameter. Some cells had a single axon whereas other cells had a primary axon that gave rise to 2–4 axon branches. Axons were located either in the optic fiber layer or just beneath it in the ganglion cell layer, or near the border of the ganglion cell layer and the inner plexiform layer. This study shows that in the human retina, intraretinal axon collaterals are associated with a morphologically distinct ganglion cell type. The synaptic connections and functional role of these cells are not yet known. Since distinct ganglion cell types with intraretinal axon collaterals have also been found in monkey, cat, and turtle, this cell type may be common to all vertebrate retinas.


Author(s):  
Yasuaki Kamata ◽  
Naoto Hara ◽  
Tsukasa Satou ◽  
Takahiro Niida ◽  
Kazuo Mukuno

Abstract Purpose The pathology of Parkinson's disease (PD) is suspected to affect the retina and choroid. We investigated changes in the retina and choroid of patients with PD using optical coherence tomography. Methods We examined 14 patients with PD and 22 patients without PD. Patients without PD had no ophthalmic disease other than cataracts. In addition, it was also confirmed that there was no neurodegenerative disease. The retinal nerve fiber layer, ganglion cell layer + inner plexiform layer, and choroidal thickness were compared between both groups. Additionally, the choroidal image was divided into the choroid area, luminal area, and interstitial area using the binarization method, and the area of each region and the percentage of luminal area in the choroid area were analyzed. Results Patients with PD had a significantly thinner ganglion cell layer + inner plexiform layer compared to those without PD. The choroid area, luminal area, and interstitial area were significantly decreased in patients with PD compared to those without PD. Seven patients with PD who were successfully followed up showed decreased retinal nerve fiber layer and interstitial area after 3 years. Conclusion Autonomic nervous disorders and neurodegeneration in PD can cause thinning of the retina and choroid, as well as a reduction in the choroid area.


1990 ◽  
Vol 4 (6) ◽  
pp. 619-623 ◽  
Author(s):  
Jan M. Provis ◽  
John Mitrofanis

AbstractWe have examined the morphology and distribution of neurones that contain nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase in human retinae. NADPH-diaphorase reactivity was observed in three different classes of amacrine cells (ND1, ND2, ND3 cells) and in the cone photoreceptors. ND1 cells had relatively large somata (mean, 12.3 ¼m) located in the inner nuclear layer (INL) and in the ganglion cell layer (GCL). Their dendrites were often strongly labeled and spread into either the middle or outer strata of the inner plexiform layer (IPL). The somata of ND2 cells were medium-sized (mean, 8.2 ¼m) and located in the INL and in the GCL; their dendrites were usually beaded and often spread in either the middle or outer strata of the IPL. ND3 cells had small, round somata (mean, 5.2 ¼m) located in either the INL or GCL, and were without labeled processes. The total number of NADPH-diaphorase cells (all classes) was estimated at 118,000, with a mean density of about 100/mm2. The most striking fea ture of NADPH-diaphorase cells in humans was that their distribution was relatively uniform across the retina, with no evidence of a peak in density at the foveal rim.


Development ◽  
1974 ◽  
Vol 31 (1) ◽  
pp. 139-149
Author(s):  
H. Fujisawa ◽  
H. Nakamura ◽  
M. Chin

The fine structure of reconstructed neural retina formed from dissociated neural retinal cells of 6½-day-old chick embryos on the chorio-allantoic membrane of chick embryos was examined with the electron microscope. Three nuclear layers (ganglion cell layer, inner and outer nuclear layers) and two fibrous layers (inner and outer plexiform layers) are found within the reconstructed retina. Both the outer and the inner limiting membranes of the reconstructed structure are constituted from the processes of differentiated Müller cells. The ganglion cell layer consists of two types of cell, though a typical ganglion cell with axonal process is not observed. Optic nerve fibres are not formed. Amacrine cells are recognized within the inner nuclear layer. Differentiation of the inner segment of the photoreceptor cell occurs, but not of the outer segment. Synaptic structures are recognized in the inner plexiform layer, but not in the outer plexiform layer.


2021 ◽  
Author(s):  
Yasuaki Kamata ◽  
Naoto Hara ◽  
Tsukasa Satou ◽  
Takahiro Niida ◽  
Kazuo Mukuno

Abstract PurposeThe pathology of Parkinson's disease (PD) is suspected to affect the retina and choroid. We investigated changes in the retina and choroid of patients with PD using optical coherence tomography (OCT).MethodsWe examined 14 patients with PD and 22 patients without PD. Patients without PD had no ophthalmic pathology other than cataracts and neurodegenerative disorders. The retinal nerve fiber layer, ganglion cell layer + inner plexiform layer, and choroidal thickness were compared between both groups. Additionally, the choroidal image was divided into the choroid area, luminal area, and interstitial area using the binarization method, and the area of each region and the percentage of luminal area in the choroid area was analyzed. ResultsPatients with PD had a significantly thinner ganglion cell layer + inner plexiform layer compared to those without PD. The choroid area, luminal area, and interstitial area were significantly decreased in patients with PD compared to those without PD. Seven patients with PD who were successfully followed-up for 3 years showed decreased retinal nerve fiber layer and interstitial area after 3 years.ConclusionAutonomic nervous disorders and neurodegeneration in PD can cause thinning of the retina and choroid, as well as a reduction of the choroid area.


1991 ◽  
Vol 6 (6) ◽  
pp. 553-562 ◽  
Author(s):  
Christopher Brandon

AbstractIn the mammalian retina, the dendritic arbors of cholinergic amacrine neurons have a unique starburst shape; these arbors lie in narrow sublaminae within the inner plexiform layer, where they provide input to a wide variety of ganglion cell types. Immunocytochemistry has been used to identify cholinergic cells in one poikilotherm, the goldfish (Tumosa et al., 1984), but there has been no description of the detailed dendritic morphology of these cells in the lower vertebrates. In the present study, cholinergic neurons have been characterized, by immunocytochemistry and dye filling, in the retina of the Pacific Coast dogfish, Squalus acanthias.The inner nuclear layer contained two populations of choline acetyltransferase-immunoreactive amacrine cells, of different sizes (average soma diameters 12.2 vs. 16.3 μm); 70% of the immunoreactive cells were of the smaller type. Cholinergic dendrites from these two cell populations formed two narrow strata within the inner plexiform layer, at depths of 14% and 31%. In the ganglion cell layer, 40% of the cells were immunoreactive for choline acetyltransferase (ChAT); these cells were very homogeneous in size, had an average diameter of 12.6 μm, and appeared to represent a single class of cholinergic amacrine. The dendrites of these cells formed a single, narrow stratum within the inner plexiform layer, at a depth of 59%.In living preparations, the smallest cell bodies in the ganglion cell layer were filled iontophoretically with Lucifer Yellow, under microscopic control. Such cells invariably had a stellate morphology; in many cases, they appeared quite similar to the starburst cholinergic amacrine cells described in rabbit and rat (Vaney, 1984; Voigt, 1986). Although double-label experiments failed to demonstrate ChAT immunoreactivity in specific dye-filled cells, the dendritic arbors of individual dye-filled stellate dogfish amacrines did co-stratify precisely with the proximal ChAT-immunoreactive sublamina of the inner plexiform layer. In addition, dye injection and ChAT immunocytochemistry appeared to label the same population of dogfish neurons, as suggested by the close structural similarity, and similar numerical proportion, of the cells identified with these two techniques.Similarities between the displaced cholinergic amacrine neurons of the dogfish retina, and the cholinergic, “starburst” amacrine neurons of the rabbit retina, are discussed.


Sign in / Sign up

Export Citation Format

Share Document