Chromatic detection and discrimination in the periphery: A postreceptoral loss of color sensitivity

2003 ◽  
Vol 20 (5) ◽  
pp. 511-521 ◽  
Author(s):  
JESSICA R. NEWTON ◽  
RHEA T. ESKEW

The peripheral visual field is marked by a deterioration in color sensitivity, sometimes attributed to the random wiring of midget bipolar cells to cone photoreceptors in the peripheral retina (Mullen, 1991; Mullen & Kingdom, 1996). Using psychophysical methods, we explored differences in the sensitivity of peripheral color mechanisms with detection and discrimination of 2-deg spots at 18-deg eccentricity, and find evidence for a postreceptoral locus for the observed loss in sensitivity. As shown before, observers' sensitivity to green was lower than to red in the periphery, although the magnitude of this effect differed across observers. These results suggest that the asymmetry in peripheral sensitivity occurs at a postreceptoral site, possibly a cortical one. In addition, noise masking was used to determine the cone inputs to the peripheral color mechanisms. The masked detection contours indicate that the red and green mechanisms in the periphery respond to the linear difference of approximately equally weighted L- and M-cone contrasts, just as they do in the fovea. Thus, if the midget retinal ganglion system is responsible for red/green color perception in the fovea, it is likely to be responsible at 18-deg eccentricity as well.

2012 ◽  
Vol 29 (3) ◽  
pp. 157-168 ◽  
Author(s):  
CARLA J. ABBOTT ◽  
KUMIKO A. PERCIVAL ◽  
PAUL R. MARTIN ◽  
ULRIKE GRÜNERT

AbstractRetinal ganglion cells receive excitatory synapses from bipolar cells and inhibitory synapses from amacrine cells. Previous studies in primate suggest that the strength of inhibitory amacrine input is greater to cells in peripheral retina than to foveal (central) cells. A comprehensive study of a large number of ganglion cells at different eccentricities, however, is still lacking. Here, we compared the amacrine and bipolar input to midget and parasol ganglion cells in central and peripheral retina of marmosets (Callithrix jacchus). Ganglion cells were labeled by retrograde filling from the lateral geniculate nucleus or by intracellular injection. Presumed amacrine input was identified with antibodies against gephyrin; presumed bipolar input was identified with antibodies against the GluR4 subunit of the AMPA receptor. In vertical sections, about 40% of gephyrin immunoreactive (IR) puncta were colocalized with GABAA receptor subunits, whereas immunoreactivity for gephyrin and GluR4 was found at distinct sets of puncta. The density of gephyrin IR puncta associated with ganglion cell dendrites was comparable for midget and parasol cells at all eccentricities studied (up to 2 mm or about 16 degrees of visual angle for midget cells and up to 10 mm or >80 degrees of visual angle for parasol cells). In central retina, the densities of gephyrin IR and GluR4 IR puncta associated with the dendrites of midget and parasol cells are comparable, but the average density of GluR4 IR puncta decreased slightly in peripheral parasol cells. These anatomical results indicate that the ratio of amacrine to bipolar input does not account for the distinct functional properties of parasol and midget cells or for functional differences between cells of the same type in central and peripheral retina.


Perception ◽  
1982 ◽  
Vol 11 (4) ◽  
pp. 457-462 ◽  
Author(s):  
David Finlay

Literature dealing with the peripheral retina and its ‘specialization for motion detection’ is reviewed. The data at hand seem to indicate that the central retina is more ‘specialized’ for motion perception than the peripheral retina. It is clear that motion improves vision for stimuli presented peripherally.


2006 ◽  
Vol 23 (3-4) ◽  
pp. 503-507 ◽  
Author(s):  
I.J. MURRAY ◽  
N.R.A. PARRY ◽  
D.J. McKEEFRY

Changes of color perception in the peripheral field are measured using an asymmetric simultaneous matching paradigm. The data confirm previous observations in that saturation changes can be neutralized if the test target is increased in size. However, this compensation does not apply to hue shifts. We show that some hues remain unchanged with eccentricity whereas others exhibit substantial changes. Here the color shifts are plotted in terms of a second-stage cone opponent model. The data suggest that the S-L+M channel is more robust to increasing eccentricity than the L-M channel. Observations are interpreted in terms of the known underlying morphological and physiological differences in these channels.


2016 ◽  
Vol 57 (6) ◽  
pp. 2797 ◽  
Author(s):  
Jamie L. Odden ◽  
Aleksandra Mihailovic ◽  
Michael V. Boland ◽  
David S. Friedman ◽  
Sheila K. West ◽  
...  

2017 ◽  
Vol 89 (2) ◽  
pp. 84-103 ◽  
Author(s):  
Heidrun Kuhrt ◽  
Andreas Bringmann ◽  
Wolfgang Härtig ◽  
Gudrun Wibbelt ◽  
Leo Peichl ◽  
...  

Elephants are precocial mammals that are relatively mature as newborns and mobile shortly after birth. To determine whether the retina of newborn elephants is capable of supporting the mobility of elephant calves, we compared the retinal structures of 2 newborn elephants (1 African and 1 Asian) and 2 adult animals of both species by immunohistochemical and morphometric methods. For the first time, we present here a comprehensive qualitative and quantitative characterization of the cellular composition of the newborn and the adult retinas of 2 elephant species. We found that the retina of elephants is relatively mature at birth. All retinal layers were well discernible, and various retinal cell types were detected in the newborns, including Müller glial cells (expressing glutamine synthetase and cellular retinal binding protein; CRALBP), cone photoreceptors (expressing S-opsin or M/L-opsin), protein kinase Cα-expressing bipolar cells, tyrosine hydroxylase-, choline acetyltransferase (ChAT)-, calbindin-, and calretinin-expressing amacrine cells, and calbindin-expressing horizontal cells. The retina of newborn elephants contains discrete horizontal cells which coexpress ChAT, calbindin, and calretinin. While the overall structure of the retina is very similar between newborn and adult elephants, various parameters change after birth. The postnatal thickening of the retinal ganglion cell axons and the increase in ganglion cell soma size are explained by the increase in body size after birth, and the decreases in the densities of neuronal and glial cells are explained by the postnatal expansion of the retinal surface area. The expression of glutamine synthetase and CRALBP in the Müller cells of newborn elephants suggests that the cells are already capable of supporting the activities of photoreceptors and neurons. As a peculiarity, the elephant retina contains both normally located and displaced giant ganglion cells, with single cells reaching a diameter of more than 50 µm in adults and therefore being almost in the range of giant retinal ganglion cells found in aquatic mammals. Some of these ganglion cells are displaced into the inner nuclear layer, a unique feature of terrestrial mammals. For the first time, we describe here the occurrence of many bistratified rod bipolar cells in the elephant retina. These bistratified bipolar cells may improve nocturnal contrast perception in elephants given their arrhythmic lifestyle.


2016 ◽  
Vol 16 (12) ◽  
pp. 1179
Author(s):  
Kyriaki Mikellidou ◽  
Francesca Frijia ◽  
Domenico Montanaro ◽  
Vincenzo Greco ◽  
David Burr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document