body sway
Recently Published Documents


TOTAL DOCUMENTS

709
(FIVE YEARS 132)

H-INDEX

47
(FIVE YEARS 5)

2022 ◽  
Vol 15 ◽  
Author(s):  
Diana Bzdúšková ◽  
Martin Marko ◽  
Zuzana Hirjaková ◽  
Jana Kimijanová ◽  
František Hlavačka ◽  
...  

Virtual reality (VR) enables individuals to be exposed to naturalistic environments in laboratory settings, offering new possibilities for research in human neuroscience and treatment of mental disorders. We used VR to study psychological, autonomic and postural reactions to heights in individuals with varying intensity of fear of heights. Study participants (N = 42) were immersed in a VR of an unprotected open-air elevator platform in an urban area, while standing on an unstable ground. Virtual elevation of the platform (up to 40 m above the ground level) elicited robust and reliable psychophysiological activation including increased distress, heart rate, and electrodermal activity, which was higher in individuals suffering from fear of heights. In these individuals, compared with individuals with low fear of heights, the VR height exposure resulted in higher velocity of postural movements as well as decreased low-frequency (<0.5 Hz) and increased high-frequency (>1 Hz) body sway oscillations. This indicates that individuals with strong fear of heights react to heights with maladaptive rigidity of posture due to increased weight of visual input for balance control, while the visual information is less reliable at heights. Our findings show that exposure to height in a naturalistic VR environment elicits a complex reaction involving correlated changes of the emotional state, autonomic activity, and postural balance, which are exaggerated in individuals with fear of heights.


2022 ◽  
Vol 88 (1) ◽  
pp. 91-101
Author(s):  
Yuta YAMAGUCHI ◽  
Haruki NAKAYAMA ◽  
Takuya KAMITANI ◽  
Masashi NISHIYAMA ◽  
Yoshio IWAI ◽  
...  

Children ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
Riccardo Nocini ◽  
Carlo Baraldi ◽  
Enrico Apa ◽  
Andrea Ciorba ◽  
Daniele Monzani ◽  
...  

Vestibular migraine (VM) is the most common cause of episodic vertigo in children. Vertigo, nausea, dizziness and unsteadiness are often complained of by children with migraine, which can precede, follow or be present simultaneously with headache. The aim of this study was to use posturography to investigate the visually evoked postural responses (VEPRs) of children with VM and compare them to data obtained from children with primary headache (M) and controls (C). Twenty children diagnosed as affected by VM, nineteen children with M without aura and twenty healthy subjects were recruited in this cross-sectional study. Posturography was performed by a standardized stabilometric force-platform (Svep-Politecnica) in the following conditions: open eyes (OE), closed eyes (CE) and during full-field horizontal optokinetic stimulation (OKN-S). Electronystagmography was performed simultaneously to analyze optokinetic reflex parameters. In the OE condition, no difference was found between groups with respect to body sway area. In contrast, this parameter increased in the two pathological groups with respect to controls in the CE condition. The optokinetic stimulations also induced a similar increase of body sway area in the M group relative to controls, but a further increase was elicited in the VM group. Electronystagmographic recording also revealed different optokinetic reflex parameters in the latter groups. This study disclosed an abnormal sensitivity of children with M and VM to full-field moving scenes and a consequent destabilization of posture, as documented by the abnormal VEPRs. Children with VM were particularly exposed to this risk. Possible clinical implications of these findings are discussed.


2021 ◽  
pp. 1-15
Author(s):  
Samar Babaee ◽  
Moslem Shaabani ◽  
Mohsen Vahedi

BACKGROUND: Galvanic vestibular stimulation (GVS) is believed to be one of the most valuable tools for studying the vestibular system. In our opinion, its combined effect on posture and perception needs to be examined more. OBJECTIVE: The present study was conducted to investigate the effect of a 20 Hz sinusoidal Galvanic Vestibular Stimulation (sGVS) on the body sway and subjective visual vertical (SVV) deviation through two sets of electrode montages (bipolar binaural and double temple-mastoidal stimulation) during a three-stage experiment (baseline, threshold, and supra-threshold levels). METHODS: While the individuals (32 normal individuals, 10 males, the mean age of 25.37±3.00 years) were standing on a posturography device and SVV goggles were put on, the parameters of the body sway and SVV deviation were measured simultaneously. Following the baseline stage (measuring without stimulation), the parameters were investigated during the threshold and supra-threshold stages (1 mA above the threshold) for 20 seconds. This was done separately for each electrode montage. Then, the results were compared between the three experimental stages and the two electrode montages. RESULTS: In both electrode montages, “the maximum amplitude” of the mediolateral (ML) and anteroposterior (AP) body sway decreased and increased in the threshold and supra-threshold stages, respectively, compared to the baseline stage. Comparison of the amount of  “amplitude change” caused by each electrode montages showed that the double temple-mastoidal stimulation induced a significantly greater amplitude change in body sway during both threshold and supra-threshold stages (relative to the baseline stage). The absolute mean values of the SVV deviation were significantly different between the baseline and supra-threshold levels in both electrode montages. The SVV deviation in double temple-mastoidal stimulation was a bit greater than that in the bipolar binaural stimulation. CONCLUSION: Double temple-mastoidal stimulation has induced greater amount of change in the body sway and SVV deviation. This may be due to the more effective stimulation of the otoliths than semicircular canals.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259977
Author(s):  
Kenan Bektaş ◽  
Tyler Thrash ◽  
Mark A. van Raai ◽  
Patrik Künzler ◽  
Richard Hahnloser

Embodied interfaces are promising for virtual reality (VR) because they can improve immersion and reduce simulator sickness compared to more traditional handheld interfaces (e.g., gamepads). We present a novel embodied interface called the Limbic Chair. The chair is composed of two separate shells that allow the user’s legs to move independently while sitting. We demonstrate the suitability of the Limbic Chair in two VR scenarios: city navigation and flight simulation. We compare the Limbic Chair to a gamepad using performance measures (i.e., time and accuracy), head movements, body sway, and standard questionnaires for measuring presence, usability, workload, and simulator sickness. In the city navigation scenario, the gamepad was associated with better presence, usability, and workload scores. In the flight simulation scenario, the chair was associated with less body sway (i.e., less simulator sickness) and fewer head movements but also slower performance and higher workload. In all other comparisons, the Limbic Chair and gamepad were similar, showing the promise of the Chair for replacing some control functions traditionally executed using handheld devices.


2021 ◽  
Vol 12 ◽  
Author(s):  
Thomas Romeas ◽  
Selma Greffou ◽  
Remy Allard ◽  
Robert Forget ◽  
Michelle McKerral ◽  
...  

Motor control deficits outlasting self-reported symptoms are often reported following mild traumatic brain injury (mTBI). The exact duration and nature of these deficits remains unknown. The current study aimed to compare postural responses to static or dynamic virtual visual inputs and during standard clinical tests of balance in 38 children between 9 and 18 years-of-age, at 2 weeks, 3 and 12 months post-concussion. Body sway amplitude (BSA) and postural instability (vRMS) were measured in a 3D virtual reality (VR) tunnel (i.e., optic flow) moving in the antero-posterior direction in different conditions. Measures derived from standard clinical balance evaluations (BOT-2, Timed tasks) and post-concussion symptoms (PCSS-R) were also assessed. Results were compared to those of 38 healthy non-injured children following a similar testing schedule and matched according to age, gender, and premorbid level of physical activity. Results highlighted greater postural response with BSA and vRMS measures at 3 months post-mTBI, but not at 12 months when compared to controls, whereas no differences were observed in post-concussion symptoms between mTBI and controls at 3 and 12 months. These deficits were specifically identified using measures of postural response in reaction to 3D dynamic visual inputs in the VR paradigm, while items from the BOT-2 and the 3 timed tasks did not reveal deficits at any of the test sessions. PCSS-R scores correlated between sessions and with the most challenging condition of the BOT-2 and as well as with the timed tasks, but not with BSA and vRMS. Scores obtained in the most challenging conditions of clinical balance tests also correlated weakly with BSA and vRMS measures in the dynamic conditions. These preliminary findings suggest that using 3D dynamic visual inputs such as optic flow in a controlled VR environment could help detect subtle postural impairments and inspire the development of clinical tools to guide rehabilitation and return to play recommendations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sidney Grosprêtre ◽  
Uros Marusic ◽  
Philippe Gimenez ◽  
Gael Ennequin ◽  
Laurent Mourot ◽  
...  

Motor imagery (MI) for health and performance strategies has gained interest in recent decades. Nevertheless, there are still no studies that have comprehensively investigated the physiological responses during MI, and no one questions the influence of low-level contraction on these responses. Thus, the aim of the present study was to investigate the neuromuscular, autonomic nervous system (ANS), and cardiometabolic changes associated with an acute bout of MI practice in sitting and standing condition. Twelve young healthy males (26.3 ± 4.4 years) participated in two experimental sessions (control vs. MI) consisting of two postural conditions (sitting vs. standing). ANS, hemodynamic and respiratory parameters, body sway parameters, and electromyography activity were continuously recorded, while neuromuscular parameters were recorded on the right triceps surae muscles before and after performing the postural conditions. While MI showed no effect on ANS, the standing posture increased the indices of sympathetic system activity and decreased those of the parasympathetic system (p < 0.05). Moreover, MI during standing induced greater spinal excitability compared to sitting posture (p < 0.05), which was accompanied with greater oxygen consumption, energy expenditure, ventilation, and lower cardiac output (p < 0.05). Asking individuals to perform MI of an isometric contraction while standing allows them to mentally focus on the motor command, not challenge balance, and produce specific cardiometabolic responses. Therefore, these results provide further evidence of posture and MI-related modulation of spinal excitability with additional autonomic and cardiometabolic responses in healthy young men.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7684
Author(s):  
Elena Escamilla-Martínez ◽  
Ana Gómez-Maldonado ◽  
Beatriz Gómez-Martín ◽  
Aurora Castro-Méndez ◽  
Juan Antonio Díaz-Mancha ◽  
...  

The incidence of falls in adults constitutes a public health problem, and the alteration in balance is the most important factor. It is necessary to evaluate this through objective tools in order to quantify alterations and prevent falls. This study aims to determine the existence of alteration of balance and the influence of age in a population of healthy women. Static posturography was performed on 49 healthy adult women with no history of falls in four different situations using the Romberg test with the NedSVE/IBV® platform. The variables studied were the body sway area and the anteroposterior and mediolateral displacements. The situation of maximum instability occurred in RGC (p = 0.001), with a significant increase in anteroposterior oscillations regarding the ML (p < 0.001), with no correlation to age. Age alone does not influence the balance in the sample studied, other factors must come together to alter it. The joint cancellation of visual and somatosensory afferents could facilitate the appearance of falls, given that it is a situation of maximum instability. Proprioceptive training is interesting as a preventive strategy for falls.


2021 ◽  
pp. 110890
Author(s):  
Tiago Penedo ◽  
Nicolas Vuillerme ◽  
Felipe Balistieri Santinelli ◽  
Gabriel Felipe Moretto ◽  
Elisa de Carvalho Costa ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document