Receptive-field structure of optic flow responsive Purkinje cells in the vestibulocerebellum of pigeons

2006 ◽  
Vol 23 (1) ◽  
pp. 115-126 ◽  
Author(s):  
IAN R. WINSHIP ◽  
DOUGLAS R.W. WYLIE

Neurons sensitive to optic flow patterns have been recorded in the the olivo-vestibulocerebellar pathway and extrastriate visual cortical areas in vertebrates, and in the visual neuropile of invertebrates. The complex spike activity (CSA) of Purkinje cells in the vestibulocerebellum (VbC) responds best to patterns of optic flow that result from either self-rotation or self-translation. Previous studies have suggested that these neurons have a receptive-field (RF) structure that “approximates” the preferred optic flowfield with a “bipartite” organization. Contrasting this, studies in invertebrate species indicate that optic flow sensitive neurons are precisely tuned to their preferred flowfield, such that the local motion sensitivities and local preferred directions within their RFs precisely match the local motion in that region of the preferred flowfield. In this study, CSA in the VbC of pigeons was recorded in response to a set of complex computer-generated optic flow stimuli, similar to those used in previous studies of optic flow neurons in primate extrastriate visual cortex, to test whether the receptive field was of a precise or bipartite organization. We found that these RFs were not precisely tuned to optic flow patterns. Rather, we conclude that these neurons have a bipartite RF structure that approximates the preferred optic flowfield by pooling motion subunits of only a few different direction preferences.

1995 ◽  
Vol 12 (1) ◽  
pp. 117-139 ◽  
Author(s):  
M.H. Rowe ◽  
L.A. Palmer

AbstractThe spatio-temporal receptive-field structure of 54 phasic W cells in cat retinas has been examined using the reverse-correlation method of Jones and Palmer (1987). Within this sample, 12 cells had on-center, 16 off-center, and 26 on-off receptive fields. Three of the on-center and seven of the on-off cells were directionally selective. Forty percent of the cells in this sample had local receptive fields consisting of two or more distinct subregions. However, no correlation was observed between the number of subregions in the local receptive field and other response properties such as center sign or direction selectivity. In all cases, individual subregions, including those in on-off cells, appear to be produced by a half-wave rectification of the input signal. For 76% of the cells, these local receptive fields were contained within large suppressive fields which could be seen to extend for at least 10 deg in all directions with no apparent spatial structure. The mechanism producing the suppressive field also appears to involve a rectification of the input signal, and has a relatively high spatial resolution. Furthermore, the suppressive field itself is only responsive to moving or flickering stimuli; large, stationary gratings have no effect on the output of the local receptive-field mechanism. Thus, the overall receptive-field organization of these cells is particularly well suited for detecting local motion. The remaining 24% of cells in the sample lacked suppressive fields, and consequently responded well to large moving stimuli, but these cells were otherwise similar in their receptive-field properties to cells with suppressive fields. The significance of these properties is discussed in the context of the projections of phasic W cells to the superior colliculus and accessory optic system.


2012 ◽  
Vol 108 (3) ◽  
pp. 794-801 ◽  
Author(s):  
Velia Cardin ◽  
Lara Hemsworth ◽  
Andrew T. Smith

The extraction of optic flow cues is fundamental for successful locomotion. During forward motion, the focus of expansion (FoE), in conjunction with knowledge of eye position, indicates the direction in which the individual is heading. Therefore, it is expected that cortical brain regions that are involved in the estimation of heading will be sensitive to this feature. To characterize cortical sensitivity to the location of the FoE or, more generally, the center of flow (CoF) during visually simulated self-motion, we carried out a functional MRI (fMRI) adaptation experiment in several human visual cortical areas that are thought to be sensitive to optic flow parameters, namely, V3A, V6, MT/V5, and MST. In each trial, two optic flow patterns were sequentially presented, with the CoF located in either the same or different positions. With an adaptation design, an area sensitive to heading direction should respond more strongly to a pair of stimuli with different CoFs than to stimuli with the same CoF. Our results show such release from adaptation in areas MT/V5 and MST, and to a lesser extent V3A, suggesting the involvement of these areas in the processing of heading direction. The effect could not be explained either by differences in local motion or by attention capture. It was not observed to a significant extent in area V6 or in control area V1. The different patterns of responses observed in MST and V6, areas that are both involved in the processing of egomotion in macaques and humans, suggest distinct roles in the processing of visual cues for self-motion.


2003 ◽  
Vol 90 (3) ◽  
pp. 1626-1634 ◽  
Author(s):  
Katja Karmeier ◽  
Holger G. Krapp ◽  
Martin Egelhaaf

The sophisticated receptive field organization of motion-sensitive tangential cells in the visual system of the blowfly Calliphora vicina matches the structure of particular optic flow fields. Hypotheses on the tuning of particular tangential cells to rotatory self-motion are based on local motion measurements. So far, tangential cells have never been tested with global optic flow stimuli. Therefore we measured the responses of an identifiable neuron, the V1 tangential cell, to wide-field motion stimuli mimicking optic flow fields similar to those the fly encounters during particular self-motions. The stimuli were generated by a “planetarium-projector,” casting a pattern of moving light dots on a large spherical projection screen. We determined the tuning curves of the V1-cell to optic flow fields as induced by the animal during 1) rotation about horizontally aligned body axes, 2) upward/downward translation, and 3) a combination of both components. We found that the V1-cell does not respond as specifically to self-rotations, as had been concluded from its receptive field organization. The neuron responds strongly to upward translation and its tuning to rotations is much coarser than expected. The discrepancies between the responses to global optic flow and the predictions based on the receptive field organization are likely due to nonlinear integration properties of tangential neurons. Response parameters like orientation, shape, and width of the tuning curve are largely unaffected by changes in rotation velocity or a superposition of rotational and translational optic flow.


2010 ◽  
Vol 103 (5) ◽  
pp. 2794-2807 ◽  
Author(s):  
Chen Ping Yu ◽  
William K. Page ◽  
Roger Gaborski ◽  
Charles J. Duffy

Optic flow informs moving observers about their heading direction. Neurons in monkey medial superior temporal (MST) cortex show heading selective responses to optic flow and planar direction selective responses to patches of local motion. We recorded MST neuronal responses to a 90 × 90° optic flow display and to a 3 × 3 array of local motion patches covering the same area. Our goal was to test the hypothesis that the optic flow responses reflect the sum of the local motion responses. The local motion responses of each neuron were modeled as mixtures of Gaussians, combining the effects of two Gaussian response functions derived using a genetic algorithm, and then used to predict that neuron's optic flow responses. Some neurons showed good correspondence between local motion models and optic flow responses, others showed substantial differences. We used the genetic algorithm to modulate the relative strength of each local motion segment's responses to accommodate interactions between segments that might modulate their relative efficacy during co-activation by global patterns of optic flow. These gain modulated models showed uniformly better fits to the optic flow responses, suggesting that coactivation of receptive field segments alters neuronal response properties. We tested this hypothesis by simultaneously presenting local motion stimuli at two different sites. These two-segment stimuli revealed that interactions between response segments have direction and location specific effects that can account for aspects of optic flow selectivity. We conclude that MST's optic flow selectivity reflects dynamic interactions between spatially distributed local planar motion response mechanisms.


1997 ◽  
Vol 9 (4) ◽  
pp. 721-763 ◽  
Author(s):  
Rajesh P. N. Rao ◽  
Dana H. Ballard

The responses of visual cortical neurons during fixation tasks can be significantly modulated by stimuli from beyond the classical receptive field. Modulatory effects in neural responses have also been recently reported in a task where a monkey freely views a natural scene. In this article, we describe a hierarchical network model of visual recognition that explains these experimental observations by using a form of the extended Kalman filter as given by the minimum description length (MDL) principle. The model dynamically combines input-driven bottom-up signals with expectation-driven top-down signals to predict current recognition state. Synaptic weights in the model are adapted in a Hebbian manner according to a learning rule also derived from the MDL principle. The resulting prediction-learning scheme can be viewed as implementing a form of the expectation-maximization (EM) algorithm. The architecture of the model posits an active computational role for the reciprocal connections between adjoining visual cortical areas in determining neural response properties. In particular, the model demonstrates the possible role of feedback from higher cortical areas in mediating neurophysiological effects due to stimuli from beyond the classical receptive field. Simulations of the model are provided that help explain the experimental observations regarding neural responses in both free viewing and fixating conditions.


1998 ◽  
Vol 79 (4) ◽  
pp. 1902-1917 ◽  
Author(s):  
Holger G. Krapp ◽  
Bärbel Hengstenberg ◽  
Roland Hengstenberg

Krapp, Holger G., Bärbel Hengstenberg, and Roland Hengstenberg. Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. J. Neurophysiol. 79: 1902–1917, 1998. The third visual neuropil (lobula plate) of the blowfly Calliphora erythrocephala is a center for processing motion information. It contains, among others, 10 individually identifiable “vertical system” (VS) neurons responding to visual wide-field motions of arbitrary patterns. We demonstrate that each VS neuron is tuned to sense a particular aspect of optic flow that is generated during self-motion. Thus the VS neurons in the fly supply visual information for the control of head orientation, body posture, and flight steering. To reveal the functional organization of the receptive fields of the 10 VS neurons, we determined with a new method the distributions of local motion sensitivities and local preferred directions at 52 positions in the fly's visual field. Each neuron was identified by intracellular staining with Lucifer yellow and three-dimensional reconstructions from 10-μm serial sections. Thereby the receptive-field organization of each recorded neuron could be correlated with the location and extent of its dendritic arborization in the retinotopically organized neuropil of the lobula plate. The response fields of the VS neurons, i.e., the distributions of local preferred directions and local motion sensitivities, are not uniform but resemble rotatory optic flow fields that would be induced by the fly during rotations around various horizontal axes. Theoretical considerations and quantitative analyses of the data, which will be presented in a subsequent paper, show that VS neurons are highly specialized neural filters for optic flow processing and thus for the visual sensation of self-motions in the fly.


Sign in / Sign up

Export Citation Format

Share Document