scholarly journals Loss of melanoregulin (MREG) enhances cathepsin-D secretion by the retinal pigment epithelium

2013 ◽  
Vol 30 (3) ◽  
pp. 55-64 ◽  
Author(s):  
LAURA S. FROST ◽  
VANDA S. LOPES ◽  
FRANK P. STEFANO ◽  
ALVINA BRAGIN ◽  
DAVID S. WILLIAMS ◽  
...  

AbstractCathepsin-D (Cat-D) is a major proteolytic enzyme in phagocytic cells. In the retinal pigment epithelium (RPE), it is responsible for the daily degradation of photoreceptor outer segments (POSs) to maintain retinal homeostasis. Melanoregulin (MREG)-mediated loss of phagocytic capacity has been linked to diminished intracellular Cat-D activity. Here, we demonstrate that loss of MREG enhances the secretion of intermediate Cat-D (48 kDa), resulting in a net enhancement of extracellular Cat-D activity. These results suggest that MREG is required to maintain Cat-D homeostasis in the RPE and likely plays a protective role in retinal health. In this regard, in the Mregdsu/dsu mouse, we observe increased basal laminin. Loss of the Mregdsu allele is not lethal and therefore leads to slow age-dependent changes in the RPE. Thus, we propose that this model will allow us to study potential dysregulatory functions of Cat-D in retinal disease.

2021 ◽  
Author(s):  
Cristina Escrevente ◽  
Ana S. Falcão ◽  
Michael J. Hall ◽  
Mafalda Lopes-da-Silva ◽  
Pedro Antas ◽  
...  

AbstractPurposeWe aim to characterize the pathways required for autofluorescent granule (AFG) formation by retinal pigment epithelium (RPE) cells using cultured monolayers.MethodsWe fed RPE monolayers in culture with a single pulse of photoreceptor outer segments (POS). After 24h the cells started accumulating AFGs similar to lipofuscin in vivo. Using this model, we used a variety of light and electron microscopical techniques, flow cytometry and western blot to analyze the formation of AFGs. We also generated a mutant RPE line lacking Cathepsin D by gene editing.ResultsAFGs appear to derive from incompletely digested POS-containing phagosomes and are surrounded after 72h by a single membrane containing lysosome markers. We show by various methods that lysosome-phagosome fusion is required for AFG formation but that impairment of lysosomal pH or catalytic activity, particularly Cathepsin D activity, enhances AF accumulation.ConclusionsWe conclude that lysosomal dysfunction results in incomplete POS degradation and AFG accumulation.


2020 ◽  
Vol 133 (16) ◽  
pp. jcs238279
Author(s):  
Tina Storm ◽  
Thomas Burgoyne ◽  
Clare E. Futter

ABSTRACTThe retinal pigment epithelium (RPE) is a highly specialised pigmented monolayer sandwiched between the choroid and the photoreceptors in the retina. Key functions of the RPE include transport of nutrients to the neural retina, removal of waste products and water from the retina to the blood, recycling of retinal chromophores, absorption of scattered light and phagocytosis of the tips of the photoreceptor outer segments. These functions place a considerable membrane trafficking burden on the RPE. In this Cell Science at a Glance article and the accompanying poster, we focus on RPE-specific adaptations of trafficking pathways. We outline mechanisms underlying the polarised expression of membrane proteins, melanosome biogenesis and movement, and endocytic trafficking, as well as photoreceptor outer segment phagocytosis and degradation. We also briefly discuss theories of how dysfunction in trafficking pathways contributes to retinal disease.


2020 ◽  
pp. 112067212096202
Author(s):  
Aowang Qiu ◽  
Yan Yu ◽  
Junlong Huang ◽  
Qinghuai Liu ◽  
Yannis M Paulus ◽  
...  

Retinitis punctata albescens (RPA) is generally diagnosed by the presence of numerous clusters of white punctate lesions in the retina that progress over time and are related to several gene variants. The multifocal variant of congenital hypertrophy of the retinal pigment epithelium (CHRPE) is characterized by multiple, grouped, sharply circumscribed, pigmented spots. The PRPH2 gene encodes a photoreceptor-specific glycoprotein, which is essential for the morphogenesis of rod and cone photoreceptor outer segments. A 39-year-old Chinese female with nyctalopia, complained about blurred vision, presented a unique co-existing feature of RPA and CHRPE. Dilated fundus exam demonstrated numerous porcelain white discrete dots in both eyes and multiple, small, flat clusters of round brown to black pigmented lesions in the left eye. The full field electroretinography (ERG) showed decreased responses after standard dark adaptation and normal b-wave amplitudes after a long (4-h) dark-adapted period. A heterozygous PRPH2 splicing variant was detected in the proband. In addition, the same variant was found in her mother, her son, and her daughter. We describe a PRPH2 variant in a rare case of RPA associated with multifocal CHRPE of the same individual.


2010 ◽  
Vol 104 (1) ◽  
pp. 391-402 ◽  
Author(s):  
Ivy S. Samuels ◽  
Gwen M. Sturgill ◽  
Gregory H. Grossman ◽  
Mary E. Rayborn ◽  
Joe G. Hollyfield ◽  
...  

Mutations in genes expressed in the retinal pigment epithelium (RPE) underlie a number of human inherited retinal disorders that manifest with photoreceptor degeneration. Because light-evoked responses of the RPE are generated secondary to rod photoreceptor activity, RPE response reductions observed in human patients or animal models may simply reflect decreased photoreceptor input. The purpose of this study was to define how the electrophysiological characteristics of the RPE change when the complement of rod photoreceptors is decreased. To measure RPE function, we used an electroretinogram (dc-ERG)-based technique. We studied a slowly progressive mouse model of photoreceptor degeneration ( Prph Rd2/+), which was crossed onto a Nyxnob background to eliminate the b-wave and most other postreceptoral ERG components. On this background, Prph Rd2/+ mice display characteristic reductions in a-wave amplitude, which parallel those in slow PIII amplitude and the loss of rod photoreceptors. At 2 and 4 mo of age, the amplitude of each dc-ERG component (c-wave, fast oscillation, light peak, and off response) was larger in Prph Rd2/+ mice than predicted by rod photoreceptor activity (RmP3) or anatomical analysis. At 4 mo of age, the RPE in Prph Rd2/+ mice showed several structural abnormalities including vacuoles and swollen, hypertrophic cells. These data demonstrate that insights into RPE function can be gained despite a loss of photoreceptors and structural changes in RPE cells and, moreover, that RPE function can be evaluated in a broader range of mouse models of human retinal disease.


2021 ◽  
Author(s):  
Jeanee Bullock ◽  
Federica Polato ◽  
Mones Abu-Asab ◽  
Alexandra Bernardo-Colón ◽  
Elma Aflaki ◽  
...  

AbstractPurposeTo examine the contribution of PEDF-R to the phagocytosis process. Previously, we identified PEDF-R, the protein encoded by the PNPLA2 gene, as a phospholipase A2 in the retinal pigment epithelium (RPE). During phagocytosis, RPE cells ingest abundant phospholipids and protein in the form of photoreceptor outer segment (POS) tips, which are then hydrolyzed. The role of PEDF-R in RPE phagocytosis is not known.MethodsMice in which PNPLA2 was conditionally knocked out in the RPE were generated (cKO). Mouse RPE/choroid explants were cultured. Human ARPE-19 cells were transfected with siPNPLA2 silencing duplexes. POS were isolated from bovine retinas. The phospholipase A2 inhibitor bromoenol lactone was used. Transmission electron microscopy, immunofluorescence, lipid labeling, pulse-chase experiments, western blots, and free fatty acid and β-hydroxybutyrate assays were performed.ResultsThe RPE of the cKO mice accumulated lipids as well as more abundant and larger rhodopsin particles compared to littermate controls. Upon POS exposure, RPE explants from cKO mice released less β-hydroxybutyrate compared to controls. After POS ingestion during phagocytosis, rhodopsin degradation was stalled both in cells treated with bromoenol lactone and in PNPLA2-knocked-down cells relative to their corresponding controls. Phospholipase A2 inhibition lowered β-hydroxybutyrate release from phagocytic RPE cells. PNPLA2 knock down also resulted in a decline in fatty acids and β-hydroxybutyrate release from phagocytic RPE cells.ConclusionsPEDF-R downregulation delayed POS digestion during phagocytosis. The findings imply that efficiency of RPE phagocytosis depends on PEDF-R, thus identifying a novel contribution of this protein to POS degradation in the RPE.


Sign in / Sign up

Export Citation Format

Share Document