Abstract
Background: Strong evidence of the correlation between age-related macular degeneration (AMD) and vitreomacular interface abnormality (VMIA). Meanwhile, as a crucial mechanism of retinal pigment epithelial (RPE) cells’ homeostasis, autophagy induction by cyclic stretch appears to be particularly significant.Methods: Cultured ARPE-19 cells were subjected to cyclic stretch (20% elongation, 1HZ) for 1h, 2h, 6h, 12h,24h and 48h by FX-5000 Tension System. Then, we observed the expression levels of LC3I, LC3II, Beclin-1, SQSTM1/p62, LAMP-1, mTOR and phosphorylated mTOR(pmTOR), AMPK and pAMPK, NADPH oxidase 4 (NOX4), and vascular endothelial growth factor (VEGF) in RPE cells under stretch by western blot and immunofluorescence.Results: We found autophagic proteins mostly induced by cyclic stretch in a time-dependent fashion via mTOR suppression and AMPK activation, except for SQSTM1/p62. 3-Methyladenine(3-MA), an inhibitor for autophagy, could reduce the up-regulation of autophagy due to cyclic stretch, leading to higher level of VEGF release after 24h cyclic stretch. Rapamycin could narrow the increase degree of VEGF and NOX4 by cyclic stretch by raise autophagic level in RPE cells.Conclusion: Stretch might induce autophagy in RPE cells by mTOR or AMPK pathway. Autophagy might play the protective function for RPE cells away from mechanical stress derived from VMIA-related AMD.