mesenchymal stem cell differentiation
Recently Published Documents


TOTAL DOCUMENTS

333
(FIVE YEARS 70)

H-INDEX

50
(FIVE YEARS 10)

2021 ◽  
Vol 73 ◽  
pp. 101645
Author(s):  
Nadia S. Mahmoud ◽  
Mohamed R. Mohamed ◽  
Mohamed A.M. Ali ◽  
Hadeer A. Aglan ◽  
Khalda S. Amr ◽  
...  

2021 ◽  
Vol 11 (23) ◽  
pp. 11209
Author(s):  
Catarina R. Pedrosa ◽  
Christel Chanseau ◽  
Christine Labrugère ◽  
Sivashankar Krishnamoorthy ◽  
Marie-Christine Durrieu

Human mesenchymal stem cells (hMSCs) respond to the characteristics of their surrounding microenvironment, i.e., their extracellular matrix (ECM). The possibility of mimicking the ECM offers the opportunity to elicit specific cell behaviors. The control of surface properties of a biomaterial at the scale level of the components of the ECM has the potential to effectively modulate cell response. Ordered nanoscale silicon pillar arrays were fabricated using reverse micelles of block copolymers on full wafers, with standard deviations lower than 15%. Bioactive synthetic peptides were covalently grafted on nanoarrays to evaluate possible synergies between chemistry and topography on osteogenic differentiation of hMSCs. Functionalization with RGD (Arg-Gly-Asp) and BMP-2 (bone morphogenetic protein-2) mimetic peptides lead to an enhancement of osteogenic differentiation. Bare nanopillar arrays of reduced pitch were found to promote faster hMSC differentiation. These findings highlight the relevance of investigating possibilities of engineering in vitro systems which can be fine-tuned according to the envisaged cell response.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1178
Author(s):  
Mikhail Menshikov ◽  
Ekaterina Zubkova ◽  
Iuri Stafeev ◽  
Yelena Parfyonova

Mesenchymal stem cells (MSC) are multipotent cells capable to differentiate into adipogenic, osteogenic, and chondrogenic directions, possessing immunomodulatory activity and a capability to stimulate angiogenesis. A scope of these features and capabilities makes MSC a significant factor of tissue homeostasis and repair. Among factors determining the fate of MSC, a prominent place belongs to autophagy, which is activated under different conditions including cell starvation, inflammation, oxidative stress, and some others. In addition to supporting cell homeostasis by elimination of protein aggregates, and non-functional and damaged proteins, autophagy is a necessary factor of change in cell phenotype on the process of cell differentiation. In present review, some mechanisms providing participation of autophagy in cell differentiation are discussed


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Ebrahim Rahmani-Moghadam ◽  
Tahereh Talaei-Khozani ◽  
Vahideh Zarrin ◽  
Zahra Vojdani

Abstract Background Phytochemical agents such as thymoquinone (TQ) have osteogenic property. This study aimed to investigate the synergic impact of TQ and hydroxyapatite on mesenchymal stem cell differentiation. Alginate was also used as drug vehicle. Methods HA scaffolds were fabricated by casting into polyurethane foam and sintering at 800 °C, and then, 1250 °C and impregnated by TQ containing alginate. The adipose-derived stem cells were aliquoted into 4 groups: control, osteogenic induced-, TQ and osteogenic induced- and TQ-treated cultures. Adipose derived-mesenchymal stem cells were mixed with alginate and loaded into the scaffolds Results The results showed that impregnation of HA scaffold with alginate decelerated the degradation rate and reinforced the mechanical strength. TQ loading in alginate/HA had no significant influence on physical and mechanical properties. Real-time RT-PCR showed significant elevation in collagen, osteopontin, and osteocalcin expression at early phase of differentiation. TQ also led to an increase in alkaline phosphatase activity. At long term, TQ administration had no impact on calcium deposition and proliferation rate as well as bone-marker expression. Conclusion TQ accelerates the differentiation of the stem cells into the osteoblasts, without changing the physical and mechanical properties of the scaffolds. TQ also showed a synergic influence on differentiation potential of mesenchymal stem cells.


Sign in / Sign up

Export Citation Format

Share Document