Macrobenthic communities of the north-western Ross Sea shelf: links to depth, sediment characteristics and latitude

2010 ◽  
Vol 22 (6) ◽  
pp. 793-804 ◽  
Author(s):  
V.J. Cummings ◽  
S.F. Thrush ◽  
M. Chiantore ◽  
J.E. Hewitt ◽  
R. Cattaneo-Vietti

AbstractIn early 2004 the Victoria Land Transect project sampled coastal north-western Ross Sea shelf benthos at Cape Adare, Cape Hallett, Cape Russell and Coulman Island from 100–500 m deep. We describe the benthic macrofaunal assemblages at these locations and, to assess the use of seafloor sediment characteristics and/or depth measures in bioregionalizations, determine the extent to which assemblage compositions are related to measured differences in these factors. Percentages of fine sand and silt, the ratio of sediment chlorophyllato phaeophytin, and depth were identified as important explanatory variables, but in combination they explained only 17.3% of between-location differences in assemblages. Consequently, these variables are clearly not strong determinants of macrofaunal assemblage structure. Latitudeper sewas not a useful measure of community variability and change. A significant correlation between both number of individuals and number of taxa and sediment phaeophytin concentration across locations suggests that the distribution of the benthos reflects their response to seafloor productivity. A number of factors not measured in this study have probably influenced the structure and function of assemblages and habitats. We discuss the implications of the results to marine classifications, and stress the need to incorporate biogenic habitat complexity into protection strategies.

2020 ◽  
Vol 237 ◽  
pp. 106299 ◽  
Author(s):  
T. Tesi ◽  
S.T. Belt ◽  
K. Gariboldi ◽  
F. Muschitiello ◽  
L. Smik ◽  
...  

2020 ◽  
Vol 20 (4) ◽  
pp. 933-946 ◽  
Author(s):  
Wahyu Widiyanto ◽  
Shih-Chun Hsiao ◽  
Wei-Bo Chen ◽  
Purwanto B. Santoso ◽  
Rudy T. Imananta ◽  
...  

Abstract. A tsunami caused by a flank collapse of the southwest part of the Anak Krakatau volcano occurred on 22 December 2018. The tsunami affected the coastal areas located at the edge of the Sunda Strait, Indonesia. To gain an understanding of the tsunami event, field surveys were conducted a month after the incident. The surveys included measurements of run-up height, inundation distance, tsunami direction, and sediment characteristics at 20 selected sites. The survey results revealed that the run-up height reached 9.2 m in Tanjungjaya and an inundation distance of 286.8 m was found at Cagar Alam, part of Ujung Kulon National Park. The tsunami propagated radially from Anak Krakatau and reached the coastal zone with a direction between 25 and 350∘ from the north. Sediment samples were collected at 27 points in tsunami deposits with a sediment thickness of 1.5–12.7 cm. The average distance from the coast of the area with significant sediment deposits and the deposit limit are 45 % and 73 % of the inundation distance, respectively. Sand sheets were sporadic, highly variable, and highly influenced by topography. Grain sizes in the deposit area were finer than those at their sources. The sizes ranged from fine sand to boulders, with medium sand and coarse sand being dominant. All sediment samples had a well-sorted distribution. An assessment of the boulder movements indicates that the tsunami run-up had minimum velocities of 4.0–4.5 m s−1.


1994 ◽  
Vol 6 (3) ◽  
pp. 359-364 ◽  
Author(s):  
D. Damaske ◽  
J. Behrendt ◽  
A. McCafferty ◽  
R. Saltus ◽  
U. Meyer

Aeromagnetic data collected on the GANOVEX IV and GANOVEX VI expeditions are combined in this report to give a synoptic view of the western Ross Sea, Antarctica. The addition of the new GANOVEX VI data allows the identification of the southern boundary of the “Ross Sea Unit” — a magnetic unit containing rift-fabric anomalies of the West Antarctic rift system in the Victoria Land basin. Although this boundary has a similar WSW–ENE orientation to the northern boundary, as identified in the GANOVEX IV survey, the newly identified southern magnetic unit (called the “Ross Island and Ice Shelf Edge Unit”) includes evidence of the S–N rift-fabric that is not found in the north, i.e. the rift-fabric continues farther south. The linear boundaries themselves are interpreted as transfer faults as proposed by previous workers for the tectonic development of the Ross Sea area.


2018 ◽  
Vol 40 (2) ◽  
pp. 63-85 ◽  
Author(s):  
L. Shumlyanskyy ◽  
L. Stepanyuk ◽  
S. Claesson ◽  
K. Rudenko ◽  
A. Bekker

2018 ◽  
Vol 20 (2) ◽  
pp. 121-134 ◽  
Author(s):  
G. G. Minicheva ◽  
V. N. Bolshakov ◽  
E. S. Kalashnik ◽  
A. B. Zotov ◽  
A. V. Marinets

Sign in / Sign up

Export Citation Format

Share Document