Characterization of the Tropical Cyclones Wind Radii in the North Western Pacific Basin Using the ASCAT Winds Data Products

Author(s):  
Seubson Soisuvarn ◽  
Suntana Oudomying
Author(s):  
Gennady M. Kamenev

An expanded description of a little-known arctic species Montacuta spitzbergensis from the Sea of Okhotsk with new data on its morphology, ecology and geographical distribution is given. This is the first record of M. spitzbergensis from the north-western Pacific. It differs from other species of Montacuta in its large (to 8.4 mm), elongate–ovate, thick shell with wide, slightly curved hinge plate, wide, short, and shallow resilifer, and weakly developed external ligament. This species occurs in the Arctic Ocean (Spitsbergen, Barents, Kara, Laptev and Chukchi Seas) and the Pacific Ocean (Sea of Okhotsk) at depths from 9 to 232 m at a bottom temperature from −1.62°C to +2.50°C. The hinge structure of the type species of the genera Montacuta and Tellimya is also discussed.


2018 ◽  
Vol 5 (2) ◽  
pp. 323-342 ◽  
Author(s):  
Hiroto Ichishima ◽  
Hitoshi Furusawa ◽  
Makino Tachibana ◽  
Masaichi Kimura

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Gou Fujie ◽  
Shuichi Kodaira ◽  
Yuka Kaiho ◽  
Yojiro Yamamoto ◽  
Tsutomu Takahashi ◽  
...  

2019 ◽  
Vol 11 (9) ◽  
pp. 2677 ◽  
Author(s):  
Miho Ishizu ◽  
Yasumasa Miyazawa ◽  
Tomohiko Tsunoda ◽  
Xinyu Guo

We developed a biogeochemical and carbon model (JCOPE_EC) coupled with an operational ocean model for the North Western Pacific. JCOPE_EC represents ocean acidification indices on the background of the risks due to ocean acidification and our model experiences. It is an off-line tracer model driven by a high-resolution regional ocean general circulation model (JCOPE2M). The results showed that the model adequately reproduced the general patterns in the observed data, including the seasonal variability of chlorophyll-a, dissolved inorganic nitrogen/phosphorus, dissolved inorganic carbon, and total alkalinity. We provide an overview of this system and the results of the model validation based on the available observed data. Sensitivity analysis using fixed values for temperature, salinity, dissolved inorganic carbon and total alkalinity helped us identify which variables contributed most to seasonal variations in the ocean acidification indices, pH and Ωarg. The seasonal variation in the pHinsitu was governed mainly by balances of the change in temperature and dissolved inorganic carbon. The seasonal increase in Ωarg from winter to summer was governed mainly by dissolved inorganic carbon levels.


Sign in / Sign up

Export Citation Format

Share Document