Preliminary evidence for the microbial loop in Antarctic sea ice using microcosm simulations

2012 ◽  
Vol 24 (6) ◽  
pp. 547-553 ◽  
Author(s):  
Andrew Martin ◽  
Andrew McMinn ◽  
Simon K. Davy ◽  
Marti J. Anderson ◽  
Hilary C. Miller ◽  
...  

AbstractSea ice microalgae actively contribute to the pool of dissolved organic matter (DOM) available for bacterial metabolism, but this link has historically relied on bulk correlations between chlorophylla(a surrogate for algal biomass) and bacterial abundance. We incubated microbes from both the bottom (congelation layer) and surface brine region of Antarctic fast ice for nine days. Algal-derived DOM was manipulated by varying the duration of irradiance, restricting photosynthesis with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) or incubating in the dark. The bacterial response to changes in DOM availability was examined by performing cell counts, quantifying bacterial metabolic activity and examining community composition with denaturing gradient gel electrophoresis. The percentage of metabolically active bacteria was relatively low in the surface brine microcosm (10–20% of the bacterial community), the treatment with DCMU indirectly restricted bacterial growth and there was some evidence for changes in community structure. Metabolic activity was higher (35–69%) in the bottom ice microcosm, and while there was no variation in community structure, bacterial growth was restricted in the treatment with DCMU compared to the light/dark treatment. These results are considered preliminary, but provide a useful illustration of sea ice microbial dynamics beyond the use of ‘snapshot’ biomass correlations.

2009 ◽  
Vol 75 (23) ◽  
pp. 7570-7573 ◽  
Author(s):  
Andrew Martin ◽  
Julie Hall ◽  
Ken Ryan

ABSTRACT Experiments simulating the sea ice cycle were conducted by exposing microbes from Antarctic fast ice to saline and irradiance regimens associated with the freeze-thaw process. In contrast to hypersaline conditions (ice formation), the simulated release of bacteria into hyposaline seawater combined with rapid exposure to increased UV-B radiation significantly reduced metabolic activity.


2001 ◽  
Vol 67 (6) ◽  
pp. 2395-2403 ◽  
Author(s):  
Gundula Eller ◽  
Peter Frenzel

ABSTRACT The activity and community structure of methanotrophs in compartmented microcosms were investigated over the growth period of rice plants. In situ methane oxidation was important only during the vegetative growth phase of the plants and later became negligible. The in situ activity was not directly correlated with methanotrophic cell counts, which increased even after the decrease in in situ activity, possibly due to the presence of both vegetative cells and resting stages. By dividing the microcosms into two soil and two root compartments it was possible to locate methanotrophic growth and activity, which was greatest in the rhizoplane of the rice plants. Molecular analysis by denaturing gradient gel electrophoresis and fluorescent in situ hybridization (FISH) with family-specific probes revealed the presence of both families of methanotrophs in soil and root compartments over the whole season. Changes in community structure were detected only for members of the Methylococcaceae and could be associated only with changes in the genusMethylobacter and not with changes in the dominance of different genera in the family Methylococcaceae. For the family Methylocystaceae stable communities in all compartments for the whole season were observed. FISH analysis revealed evidence of in situ dominance of the Methylocystaceae in all compartments. The numbers of Methylococcaceae cells were relatively high only in the rhizoplane, demonstrating the importance of rice roots for growth and maintenance of methanotrophic diversity in the soil.


2021 ◽  
Author(s):  
◽  
Andrew Robert Martin

<p>Sea-ice is a predominant feature of polar oceans and exerts a unique influence on marine ecosystems. The annual circumpolar expansion of sea-ice around Antarctica provides a stable platform for the in situ colonisation and growth of a diverse assemblage of microbes that are integral to the energy base of the Southern Ocean. An active microbial loop has been proposed to operate within the ice matrix connecting bacteria, microalgae and protozoa, but validating this metabolic pathway has historically relied on bulk correlations of chlorophyll a (a surrogate for microalgal biomass) and estimates of bacterial production or abundance. I investigate the microbial loop using a range of physiological, genetic, and ecological techniques to determine whether the photosynthate exuded by phototrophic microalgae serves as a growth substrate for heterotrophic bacteria. This link is examined at a range of spatial (in vitro and in situ experiments) and temporal (8 hours to 18 days) scales by manipulating the supply of algal-derived photosynthate and documenting the subsequent change in bacterial metabolic activity, cell abundance and community composition. Single-cell analysis of both bacterial membrane integrity and intracellular activity revealed that sea ice is among the most productive microbial habitats. In short-term in vitro experiments, increased availability of dissolved organic matter (DOM) was shown to elicit a rapid metabolic response in sea ice bacteria, however single-activity was significantly reduced in treatments where photosynthate was restricted by either removing the majority of algal cells or inhibiting photosynthesis with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). To verify this metabolic response, microcosm simulations were conducted over a period of 9 days with microbes derived from two regions of the ice (bottom layer and high-salinity surface region) with presumed differences in the concentration of DOM. Metabolic activity was relatively low in bacteria derived from the high-saline region of the ice and in cultures spiked with DCMU, photosynthate limitation restricted bacterial growth and significantly influenced community structure. In contrast, the bottom of the ice is characterised by a high concentration of DOM and bacterial metabolic activity was shown to be higher and DCMU was less influential with respect to changes in bacterial abundance or community composition. To examine in situ microbial dynamics, a series of cores were extracted from Antarctic sea-ice and reinserted into the ice matrix upside down to expose resident microbial assemblages to a significantly different light, temperature and salinity regime. Limited assimilation of algal-derived DOM by bacteria in ice cores that were flipped illustrated a malfunction in the microbial loop after a period of 18 days. Bacteria originally at the bottom of the sea ice appeared to be temperature-limited, while a lack of growth in cells originally at the top of the ice profile was attributed to a community dominated by slow-growing psychrophilic species. A stronger physiological response to disturbance was elicited by microalgae and significant growth was contrasted with severe bleaching and cell death. This reciprocal transplant is the first of its kind to examine the in situ sea ice community and illustrats that although microbial assemblages are similar with respect to trophic dynamics, they are also attuned to distinct regions within the ice. The bacterial assimilation of algal-derived DOM is of fundamental importance to the microbial loop and by confirming that photosynthate is a major stimulus for bacterial growth, these results provide a new and unique insight into microbial dynamics in Antarctic sea-ice.</p>


2021 ◽  
Author(s):  
◽  
Andrew Robert Martin

<p>Sea-ice is a predominant feature of polar oceans and exerts a unique influence on marine ecosystems. The annual circumpolar expansion of sea-ice around Antarctica provides a stable platform for the in situ colonisation and growth of a diverse assemblage of microbes that are integral to the energy base of the Southern Ocean. An active microbial loop has been proposed to operate within the ice matrix connecting bacteria, microalgae and protozoa, but validating this metabolic pathway has historically relied on bulk correlations of chlorophyll a (a surrogate for microalgal biomass) and estimates of bacterial production or abundance. I investigate the microbial loop using a range of physiological, genetic, and ecological techniques to determine whether the photosynthate exuded by phototrophic microalgae serves as a growth substrate for heterotrophic bacteria. This link is examined at a range of spatial (in vitro and in situ experiments) and temporal (8 hours to 18 days) scales by manipulating the supply of algal-derived photosynthate and documenting the subsequent change in bacterial metabolic activity, cell abundance and community composition. Single-cell analysis of both bacterial membrane integrity and intracellular activity revealed that sea ice is among the most productive microbial habitats. In short-term in vitro experiments, increased availability of dissolved organic matter (DOM) was shown to elicit a rapid metabolic response in sea ice bacteria, however single-activity was significantly reduced in treatments where photosynthate was restricted by either removing the majority of algal cells or inhibiting photosynthesis with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). To verify this metabolic response, microcosm simulations were conducted over a period of 9 days with microbes derived from two regions of the ice (bottom layer and high-salinity surface region) with presumed differences in the concentration of DOM. Metabolic activity was relatively low in bacteria derived from the high-saline region of the ice and in cultures spiked with DCMU, photosynthate limitation restricted bacterial growth and significantly influenced community structure. In contrast, the bottom of the ice is characterised by a high concentration of DOM and bacterial metabolic activity was shown to be higher and DCMU was less influential with respect to changes in bacterial abundance or community composition. To examine in situ microbial dynamics, a series of cores were extracted from Antarctic sea-ice and reinserted into the ice matrix upside down to expose resident microbial assemblages to a significantly different light, temperature and salinity regime. Limited assimilation of algal-derived DOM by bacteria in ice cores that were flipped illustrated a malfunction in the microbial loop after a period of 18 days. Bacteria originally at the bottom of the sea ice appeared to be temperature-limited, while a lack of growth in cells originally at the top of the ice profile was attributed to a community dominated by slow-growing psychrophilic species. A stronger physiological response to disturbance was elicited by microalgae and significant growth was contrasted with severe bleaching and cell death. This reciprocal transplant is the first of its kind to examine the in situ sea ice community and illustrats that although microbial assemblages are similar with respect to trophic dynamics, they are also attuned to distinct regions within the ice. The bacterial assimilation of algal-derived DOM is of fundamental importance to the microbial loop and by confirming that photosynthate is a major stimulus for bacterial growth, these results provide a new and unique insight into microbial dynamics in Antarctic sea-ice.</p>


2008 ◽  
Author(s):  
A Martin ◽  
JA Hall ◽  
R O’Toole ◽  
SK Davy ◽  
KG Ryan

2020 ◽  
Vol 51 (2) ◽  
pp. 125-146
Author(s):  
Nasiruddin Nasiruddin ◽  
Yu Zhangxin ◽  
Ting Zhao Chen Guangying ◽  
Minghui Ji

We grew cucumber in pots in greenhouse for 9-successive cropping cycles and analyzed the rhizosphere Pseudomonas spp. community structure and abundance by PCR-denaturing gradient gel electrophoresis and quantitative PCR. Results showed that continuous monocropping changed the cucumber rhizosphere Pseudomonas spp. community. The number of DGGE bands, Shannon-Wiener index and Evenness index decreased during the 3rd cropping and thereafter, increased up to the 7th cropping, however, however, afterwards they decreased again. The abundance of Pseudomonas spp. increased up to the 5th successive cropping and then decreased gradually. These findings indicated that the structure and abundance of Pseudomonas spp. community changed with long-term cucumber monocropping, which might be linked to soil sickness caused by its continuous monocropping.


2011 ◽  
Vol 343-344 ◽  
pp. 351-356
Author(s):  
Xia Jia ◽  
Chun Juan Zhou

The effect of long-term elevated CO2(as open top chambers) on rhizosphere and bulk bacterial community structure in Pinus sylvestriformis seedlings field was investigated in July, August, and September. The bacterial communities were processed by Denaturing Gradient Gel Electrophoresis (DGGE) analysis of bacterial 16S rDNA fragments amplified by PCR (Polymerase Chain Reaction) from DNA extracted directly from soil. DGGE profiles from rhizosphere samples showed large changes in rhizosphere bacterial community under elevated CO2compared to ambient except for that in September. For bulk samples, bacterial community structure changed when exposed to elevated CO2in three months. With the exception of bulk samples in August, a similitude of bacterial communities structures existed between different elevated CO2concentrations by analyzing UPGMA dendrogram based on Jaccard’s coefficient.


Sign in / Sign up

Export Citation Format

Share Document