fungal community structure
Recently Published Documents


TOTAL DOCUMENTS

252
(FIVE YEARS 142)

H-INDEX

29
(FIVE YEARS 8)

2022 ◽  
Author(s):  
C Birnbaum ◽  
Jennifer Wood ◽  
Erik Lilleskov ◽  
Louis James Lamit ◽  
James Shannon ◽  
...  

Abstract Peatland ecosystems cover only 3 % of the world’s land area, however they store one-third of the global soil carbon (C). Peatlands play a central role in global C cycling as they contain more organic C than any other terrestrial ecosystem. Microbial communities are the main drivers of C decomposition in peatlands, yet we have limited knowledge of their structure and function. We investigated the vertical stratification of prokaryote and fungal communities from Wellington Plains peatland in the Australian Alps. Within the peatland complex, bog peat was sampled from the intact peatland and dried peat from the degraded peatland along a vertical soil depth gradient (i.e., acrotelm, mesotelm and catotelm). We analysed the prokaryote and fungal community structure, predicted functional profiles of prokaryotes using PICRUSt and assigned soil fungal guilds using FUNGuild. We found that the structure and the function of prokaryotes was vertically stratified in the intact bog. Carbon, manganese, nitrogen, lead and sodium best explained the prokaryote composition. Prokaryote richness was significantly higher in the intact bog acrotelm compared to degraded bog acrotelm. Fungal composition remained similar across the soil depth gradient, however there was a considerable increase in saprotroph abundance and decrease in endophyte abundance along the vertical soil depth gradient. The abundance of saprotrophs and plant pathogens was two-fold higher in the degraded bog acrotelm. Manganese, nitrogen, electrical conductivity and water table level (cm) best explained the fungal composition. Our results demonstrate that both fungal and prokaryote communities are shaped by soil abiotic factors and peatland degradation reduces microbial richness and alters microbial functions. Thus, current and future changes to the environmental conditions in these peatlands may lead to altered microbial community structure and associated functions which may have implications for broader ecosystem function changes in peatlands.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Marie-Thérèse Mofini ◽  
Abdala G. Diedhiou ◽  
Marie Simonin ◽  
Donald Tchouomo Dondjou ◽  
Sarah Pignoly ◽  
...  

AbstractFungal communities associated with roots play a key role in nutrient uptake and in mitigating the abiotic and biotic stress of their host. In this study, we characterized the roots mycobiome of wild and cultivated pearl millet [Pennisetum glaucum (L.) R. Br., synonym: Cenchrus americanus (L.) Morrone] in three agro-ecological areas of Senegal following a rainfall gradient. We hypothesized that wild pearl millet could serve as a reservoir of endophytes for cultivated pearl millet. We therefore analyzed the soil factors influencing fungal community structure and whether cultivated and wild millet shared the same fungal communities. The fungal communities associated with pearl millet were significantly structured according to sites and plant type (wild vs cultivated). Besides, soil pH and phosphorus were the main factors influencing the fungal community structure. We observed a higher fungal diversity in cultivated compared to wild pearl millet. Interestingly, we detected higher relative abundance of putative pathotrophs, especially plant pathogen, in cultivated than in wild millet in semi-arid and semi-humid zones, and higher relative abundance of saprotrophs in wild millet in arid and semi-humid zones. A network analysis based on taxa co-occurrence patterns in the core mycobiome revealed that cultivated millet and wild relatives had dissimilar groups of hub taxa. The identification of the core mycobiome and hub taxa of cultivated and wild pearl millet could be an important step in developing microbiome engineering approaches for more sustainable management practices in pearl millet agroecosystems.


2022 ◽  
Vol 8 (1) ◽  
pp. 47
Author(s):  
Sarah B. Lade ◽  
Dora Štraus ◽  
Jonàs Oliva

Grapevine trunk diseases (GTDs) are caused by cryptic complexes of fungal pathogens and have become a growing problem for new grapevine (Vitis vinifera) plantations. We studied the role of the nursery, variety, and rootstock in the composition of the fungal communities in root collars and graft unions of planting material in Catalonia (NE Spain). We compared necrosis and fungal communities in graft unions and root collars at harvest, and then after three months of cold storage. We evaluated combinations of eleven red and five white varieties with four common rootstocks coming from six nurseries. Fungal communities were characterized by isolation and metabarcoding of the ITS2 region. Our data suggests that nursery followed by rootstock and variety had significant effects on necrosis and fungal community structure in graft and root tissues. Within the plant, we found large differences in terms fungal community distribution between graft and root tissues. Graft unions housed a significantly higher relative abundance of GTD-related Operational Taxonomic Units (OTUs) than root collars. More severe necrosis was correlated with a lower relative abundance of GTD-related OTUs based on isolation and metabarcoding analyses. Our results suggest that nurseries and therefore their plant production practices play a major role in determining the fungal and GTD-related fungal community in grapevine plants sold for planting. GTD variation across rootstocks and varieties could be explored as a venue for minimizing pathogen load in young plantations.


2021 ◽  
Author(s):  
Irene Cordero ◽  
Ainara Leizeaga ◽  
Lettice C Hicks ◽  
Johannes Rousk ◽  
Richard D Bardgett

Soil microbial communities play a pivotal role in regulating ecosystem functioning but they are increasingly threatened by human-driven perturbations, including climate extremes, which are predicted to increase in frequency and intensity with climate change. It has been demonstrated that soil microbial communities are sensitive to climate extremes, such as drought, and that effects can be long-lasting. However, considerable uncertainties remain concerning the response of soil microbial communities to increases in the intensity and frequency of climate extremes, and their potential to trigger transitions to alternative, and potentially deleterious, taxonomic and functional states. Here we demonstrate that extreme, frequent drought induces a shift to an alternative soil microbial state characterised by strongly altered bacterial and fungal community structure of reduced complexity and functionality. Moreover, we found that this drought-induced alternative microbial state persisted after returning soil to its previous moisture status. However, bacterial communities were able to adapt by increasing their growth capacity, despite being of reduced diversity. Abrupt transitions to alternative states are well documented in aquatic and terrestrial plant communities in response to human-induced perturbations, including climate extremes. Our results provide experimental evidence that such transitions also occur in soil microbial communities in response to extreme drought with potentially deleterious consequences for soil health.


Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 560
Author(s):  
Nong Zhou ◽  
Maojun Mu ◽  
Hui Xie ◽  
Yu Wu ◽  
You Zhou ◽  
...  

Fritillaria taipaiensis is a valuable traditional Chinese medicinal plant that has experienced continuous decline over its cropping area. The present study aims to explore the reasons for the quality and growth decline. The fungal diversities and biochemical factors in its rhizospheric soils with cultivation duration from 1 up to 5 years were analyzed and compared. The results showed that rhizospheric fungi of F. taipaiensis belong to six phyla, including Neocallimastigomycota, Glomeromycota, Basidiomycota, Chytridiomycota, Zygomycota and Ascomycota. Thirteen genera (Pseudogymnoascus, Fusarium, Mortierella, Colletotrichum, Laetinaevia, Gibberella, Synchytrium, Lysurus, Trichocladium, Volutella, Monoblepharis, Aquamyces and Trichoderma) constituted the “core community” in the rhizosphere of F. taipaiensis. The dominant fungal genera varied significantly in rhizospheric soils with different cultivation years. The abundance of fungal species in the soil declined with the cultivation year generally. The pH, available P, organic matter and urease activity were the primary factors determining the fungal community composition in the rhizosphere. The content of organic matter, available N, P and K and the activities of urease and alkaline phosphatase decreased with cultivation years. The soil pH increased with cultivation years and was unsuitable for F. taipaiensis growth. These features suggested that long-term single planting altered the fungal community structure, fertility conditions and soil enzyme activities in F. taipaiensis rhizospheric soils, which could be detrimental for plant growth and quality.


Botany ◽  
2021 ◽  
Author(s):  
Juliana S Medeiros ◽  
Michael A Mann ◽  
Jean H. Burns ◽  
Sarah Kyker ◽  
David Burke

Rhododendron are popular ornamental plants which are well-known for forming mycorrhizal associations with ericoid fungi, but little is known about how host traits influence their microbiome more broadly. This study investigated leaf, root, rhizosphere soil, and bulk soil bacterial and fungal community structure for 12 Rhododendron species, representing four taxonomic clades with different leaf habits. Samples were collected when ephemeral hair roots colonized by ericoid mycorrhizae were absent, and microbial community structure was compared to leaf and root morphology for the same plants. Root morphology and the fungal communities of roots and rhizosphere soil were primarily structured by host ancestry. Leaf bacterial and fungal communities were even more distinct across clades than for roots or rhizosphere, and microbial communities of leaves and bulk soil were similarly structured by clade-wise differences in leaf morphology, suggesting a role for Rhododendron leaf litter in belowground microbial community structure. This work sheds new light on host traits influencing microbial community structure of ericaceous plants, showing a strong influence of ancestry, but also that different host traits drive bacterial and fungal communities across different plant compartments, suggesting future work on factors that drive similarity among close relatives in the non-ericoid microbes associating with Rhododendron.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tong Jia ◽  
Xuerong Wang ◽  
Tingyan Guo ◽  
Baofeng Chai

Microorganisms drive litter decomposition while maintaining the chemical cycle of ecosystems. We used the dominant vegetation (Imperata cylindrica) in the mining area selected for this study for this experiment to explore fungal community characteristics, key fungal groups, and their associative driving factors during I. cylindrica litter decomposition. Maximum litter C/N values occurred 100days after the commencement of the decomposition experiment during all different recovery years in this copper tailings area. Heavy metals in litter [copper (Cu), zinc (Zn), plumbum (Pb), and cadmium (Cd)] accumulated gradually with decomposition. The dominant fungal phyla observed in the community were Ascomycota and Basidiomycota, while the classes Sordariomycetes and Eurotiomycetes significantly increased as litter decomposition progressed. Degrees of connectivity and interaction between fungal communities were highest during the early litter decomposition stage. Sordariomycetes, Dothideomycetes, and Leotiomycetes all played critical roles in maintaining fungal community relationships. The effect of physicochemical properties and enzyme activities in I. cylindrica litter was significant on the dominant fungi, while driving factors that affected fungal communities differed over different recovery stages. Total nitrogen (TN), heavy metals, pH, and enzyme activities in the little were significantly correlated with fungal community composition. Litter properties throughout the litter decomposition process mainly affected the dynamics of the fungal community structure. The main environmental factors that affected fungal community structure were copper content and pH. Dichotomopilus, Trichoderma, Knufia, Phialophora, Oxyporus, and Monocillium, which all played important roles in litter decomposition, positively correlated with heavy metals, sucrase, and catalase. Finally, results from this study will help us better clarify litter decomposition mechanisms in degraded ecosystems as well as provide a scientific basis for improving species cycling and nutrient transformation efficiency in mining ecosystems.


Sign in / Sign up

Export Citation Format

Share Document