High single-cell metabolic activity in Antarctic sea ice bacteria

2008 ◽  
Author(s):  
A Martin ◽  
JA Hall ◽  
R O’Toole ◽  
SK Davy ◽  
KG Ryan
2008 ◽  
Vol 52 ◽  
pp. 25-31 ◽  
Author(s):  
A Martin ◽  
JA Hall ◽  
R O’Toole ◽  
SK Davy ◽  
KG Ryan

2009 ◽  
Vol 75 (23) ◽  
pp. 7570-7573 ◽  
Author(s):  
Andrew Martin ◽  
Julie Hall ◽  
Ken Ryan

ABSTRACT Experiments simulating the sea ice cycle were conducted by exposing microbes from Antarctic fast ice to saline and irradiance regimens associated with the freeze-thaw process. In contrast to hypersaline conditions (ice formation), the simulated release of bacteria into hyposaline seawater combined with rapid exposure to increased UV-B radiation significantly reduced metabolic activity.


2012 ◽  
Vol 24 (6) ◽  
pp. 547-553 ◽  
Author(s):  
Andrew Martin ◽  
Andrew McMinn ◽  
Simon K. Davy ◽  
Marti J. Anderson ◽  
Hilary C. Miller ◽  
...  

AbstractSea ice microalgae actively contribute to the pool of dissolved organic matter (DOM) available for bacterial metabolism, but this link has historically relied on bulk correlations between chlorophylla(a surrogate for algal biomass) and bacterial abundance. We incubated microbes from both the bottom (congelation layer) and surface brine region of Antarctic fast ice for nine days. Algal-derived DOM was manipulated by varying the duration of irradiance, restricting photosynthesis with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) or incubating in the dark. The bacterial response to changes in DOM availability was examined by performing cell counts, quantifying bacterial metabolic activity and examining community composition with denaturing gradient gel electrophoresis. The percentage of metabolically active bacteria was relatively low in the surface brine microcosm (10–20% of the bacterial community), the treatment with DCMU indirectly restricted bacterial growth and there was some evidence for changes in community structure. Metabolic activity was higher (35–69%) in the bottom ice microcosm, and while there was no variation in community structure, bacterial growth was restricted in the treatment with DCMU compared to the light/dark treatment. These results are considered preliminary, but provide a useful illustration of sea ice microbial dynamics beyond the use of ‘snapshot’ biomass correlations.


2021 ◽  
Author(s):  
◽  
Andrew Robert Martin

<p>Sea-ice is a predominant feature of polar oceans and exerts a unique influence on marine ecosystems. The annual circumpolar expansion of sea-ice around Antarctica provides a stable platform for the in situ colonisation and growth of a diverse assemblage of microbes that are integral to the energy base of the Southern Ocean. An active microbial loop has been proposed to operate within the ice matrix connecting bacteria, microalgae and protozoa, but validating this metabolic pathway has historically relied on bulk correlations of chlorophyll a (a surrogate for microalgal biomass) and estimates of bacterial production or abundance. I investigate the microbial loop using a range of physiological, genetic, and ecological techniques to determine whether the photosynthate exuded by phototrophic microalgae serves as a growth substrate for heterotrophic bacteria. This link is examined at a range of spatial (in vitro and in situ experiments) and temporal (8 hours to 18 days) scales by manipulating the supply of algal-derived photosynthate and documenting the subsequent change in bacterial metabolic activity, cell abundance and community composition. Single-cell analysis of both bacterial membrane integrity and intracellular activity revealed that sea ice is among the most productive microbial habitats. In short-term in vitro experiments, increased availability of dissolved organic matter (DOM) was shown to elicit a rapid metabolic response in sea ice bacteria, however single-activity was significantly reduced in treatments where photosynthate was restricted by either removing the majority of algal cells or inhibiting photosynthesis with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). To verify this metabolic response, microcosm simulations were conducted over a period of 9 days with microbes derived from two regions of the ice (bottom layer and high-salinity surface region) with presumed differences in the concentration of DOM. Metabolic activity was relatively low in bacteria derived from the high-saline region of the ice and in cultures spiked with DCMU, photosynthate limitation restricted bacterial growth and significantly influenced community structure. In contrast, the bottom of the ice is characterised by a high concentration of DOM and bacterial metabolic activity was shown to be higher and DCMU was less influential with respect to changes in bacterial abundance or community composition. To examine in situ microbial dynamics, a series of cores were extracted from Antarctic sea-ice and reinserted into the ice matrix upside down to expose resident microbial assemblages to a significantly different light, temperature and salinity regime. Limited assimilation of algal-derived DOM by bacteria in ice cores that were flipped illustrated a malfunction in the microbial loop after a period of 18 days. Bacteria originally at the bottom of the sea ice appeared to be temperature-limited, while a lack of growth in cells originally at the top of the ice profile was attributed to a community dominated by slow-growing psychrophilic species. A stronger physiological response to disturbance was elicited by microalgae and significant growth was contrasted with severe bleaching and cell death. This reciprocal transplant is the first of its kind to examine the in situ sea ice community and illustrats that although microbial assemblages are similar with respect to trophic dynamics, they are also attuned to distinct regions within the ice. The bacterial assimilation of algal-derived DOM is of fundamental importance to the microbial loop and by confirming that photosynthate is a major stimulus for bacterial growth, these results provide a new and unique insight into microbial dynamics in Antarctic sea-ice.</p>


2021 ◽  
Author(s):  
◽  
Andrew Robert Martin

<p>Sea-ice is a predominant feature of polar oceans and exerts a unique influence on marine ecosystems. The annual circumpolar expansion of sea-ice around Antarctica provides a stable platform for the in situ colonisation and growth of a diverse assemblage of microbes that are integral to the energy base of the Southern Ocean. An active microbial loop has been proposed to operate within the ice matrix connecting bacteria, microalgae and protozoa, but validating this metabolic pathway has historically relied on bulk correlations of chlorophyll a (a surrogate for microalgal biomass) and estimates of bacterial production or abundance. I investigate the microbial loop using a range of physiological, genetic, and ecological techniques to determine whether the photosynthate exuded by phototrophic microalgae serves as a growth substrate for heterotrophic bacteria. This link is examined at a range of spatial (in vitro and in situ experiments) and temporal (8 hours to 18 days) scales by manipulating the supply of algal-derived photosynthate and documenting the subsequent change in bacterial metabolic activity, cell abundance and community composition. Single-cell analysis of both bacterial membrane integrity and intracellular activity revealed that sea ice is among the most productive microbial habitats. In short-term in vitro experiments, increased availability of dissolved organic matter (DOM) was shown to elicit a rapid metabolic response in sea ice bacteria, however single-activity was significantly reduced in treatments where photosynthate was restricted by either removing the majority of algal cells or inhibiting photosynthesis with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). To verify this metabolic response, microcosm simulations were conducted over a period of 9 days with microbes derived from two regions of the ice (bottom layer and high-salinity surface region) with presumed differences in the concentration of DOM. Metabolic activity was relatively low in bacteria derived from the high-saline region of the ice and in cultures spiked with DCMU, photosynthate limitation restricted bacterial growth and significantly influenced community structure. In contrast, the bottom of the ice is characterised by a high concentration of DOM and bacterial metabolic activity was shown to be higher and DCMU was less influential with respect to changes in bacterial abundance or community composition. To examine in situ microbial dynamics, a series of cores were extracted from Antarctic sea-ice and reinserted into the ice matrix upside down to expose resident microbial assemblages to a significantly different light, temperature and salinity regime. Limited assimilation of algal-derived DOM by bacteria in ice cores that were flipped illustrated a malfunction in the microbial loop after a period of 18 days. Bacteria originally at the bottom of the sea ice appeared to be temperature-limited, while a lack of growth in cells originally at the top of the ice profile was attributed to a community dominated by slow-growing psychrophilic species. A stronger physiological response to disturbance was elicited by microalgae and significant growth was contrasted with severe bleaching and cell death. This reciprocal transplant is the first of its kind to examine the in situ sea ice community and illustrats that although microbial assemblages are similar with respect to trophic dynamics, they are also attuned to distinct regions within the ice. The bacterial assimilation of algal-derived DOM is of fundamental importance to the microbial loop and by confirming that photosynthate is a major stimulus for bacterial growth, these results provide a new and unique insight into microbial dynamics in Antarctic sea-ice.</p>


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Jacqueline Bertlich ◽  
Nikolaus Gussone ◽  
Jasper Berndt ◽  
Heinrich F. Arlinghaus ◽  
Gerhard S. Dieckmann

AbstractThis study presents culture experiments of the cold water species Neogloboquadrina pachyderma (sinistral) and provides new insights into the incorporation of elements in foraminiferal calcite of common and newly established proxies for paleoenvironmental applications (shell Mg/Ca, Sr/Ca and Na/Ca). Specimens were collected from sea ice during the austral winter in the Antarctic Weddell Sea and subsequently cultured at different salinities and a constant temperature. Incorporation of the fluorescent dye calcein showed new chamber formation in the culture at salinities of 30, 31, and 69. Cultured foraminifers at salinities of 46 to 83 only revealed chamber wall thickening, indicated by the fluorescence of the whole shell. Signs of reproduction and the associated gametogenic calcite were not observed in any of the culture experiments. Trace element analyses were performed using an electron microprobe, which revealed increased shell Mg/Ca, Sr/Ca, and Na/Ca values at higher salinities, with Mg/Ca showing the lowest sensitivity to salinity changes. This study enhances the knowledge about unusually high element concentrations in foraminifera shells from high latitudes. Neogloboquadrina pachyderma appears to be able to calcify in the Antarctic sea ice within brine channels, which have low temperatures and exceptionally high salinities due to ongoing sea ice formation.


Sign in / Sign up

Export Citation Format

Share Document