Evaluation of splittable pseudo-random generators

Author(s):  
HANS GEORG SCHAATHUN

AbstractPseudo-random number generation is a fundamental problem in computer programming. In the case of sequential processing the problem is very well researched, but parallel processing raises new problems whereof far too little is currently understood. Splittable pseudo-random generators (S-PRNG) have been proposed to meet the challenges of parallelism. While applicable to any programming paradigm, they are designed to be particularly suitable for pure functional programming. In this paper, we review and evaluate known constructions of such generators, and we identify flaws in several large classes of generators, including Lehmer trees, the implementation in Haskell's standard library, leapfrog, and subsequencing (substreaming).

2014 ◽  
Vol 1 ◽  
pp. 272-275 ◽  
Author(s):  
Vincent Canals ◽  
Antoni Morro ◽  
Josep L. Rosselló

2020 ◽  
Vol 26 (2) ◽  
pp. 163-169
Author(s):  
Vladimir Nekrutkin

AbstractThis paper is devoted to random-bit simulation of probability densities, supported on {[0,1]}. The term “random-bit” means that the source of randomness for simulation is a sequence of symmetrical Bernoulli trials. In contrast to the pioneer paper [D. E. Knuth and A. C. Yao, The complexity of nonuniform random number generation, Algorithms and Complexity, Academic Press, New York 1976, 357–428], the proposed method demands the knowledge of the probability density under simulation, and not the values of the corresponding distribution function. The method is based on the so-called binary decomposition of the density and comes down to simulation of a special discrete distribution to get several principal bits of output, while further bits of output are produced by “flipping a coin”. The complexity of the method is studied and several examples are presented.


2021 ◽  
Vol 485 ◽  
pp. 126736
Author(s):  
Muhammad Imran ◽  
Vito Sorianello ◽  
Francesco Fresi ◽  
Bushra Jalil ◽  
Marco Romagnoli ◽  
...  

2021 ◽  
Vol 7 (7) ◽  
pp. eabc3847
Author(s):  
Armin Tavakoli ◽  
Máté Farkas ◽  
Denis Rosset ◽  
Jean-Daniel Bancal ◽  
Jedrzej Kaniewski

Mutually unbiased bases (MUBs) and symmetric informationally complete projectors (SICs) are crucial to many conceptual and practical aspects of quantum theory. Here, we develop their role in quantum nonlocality by (i) introducing families of Bell inequalities that are maximally violated by d-dimensional MUBs and SICs, respectively, (ii) proving device-independent certification of natural operational notions of MUBs and SICs, and (iii) using MUBs and SICs to develop optimal-rate and nearly optimal-rate protocols for device-independent quantum key distribution and device-independent quantum random number generation, respectively. Moreover, we also present the first example of an extremal point of the quantum set of correlations that admits physically inequivalent quantum realizations. Our results elaborately demonstrate the foundational and practical relevance of the two most important discrete Hilbert space structures to the field of quantum nonlocality.


2021 ◽  
Vol 11 (8) ◽  
pp. 3330
Author(s):  
Pietro Nannipieri ◽  
Stefano Di Matteo ◽  
Luca Baldanzi ◽  
Luca Crocetti ◽  
Jacopo Belli ◽  
...  

Random numbers are widely employed in cryptography and security applications. If the generation process is weak, the whole chain of security can be compromised: these weaknesses could be exploited by an attacker to retrieve the information, breaking even the most robust implementation of a cipher. Due to their intrinsic close relationship with analogue parameters of the circuit, True Random Number Generators are usually tailored on specific silicon technology and are not easily scalable on programmable hardware, without affecting their entropy. On the other hand, programmable hardware and programmable System on Chip are gaining large adoption rate, also in security critical application, where high quality random number generation is mandatory. The work presented herein describes the design and the validation of a digital True Random Number Generator for cryptographically secure applications on Field Programmable Gate Array. After a preliminary study of literature and standards specifying requirements for random number generation, the design flow is illustrated, from specifications definition to the synthesis phase. Several solutions have been studied to assess their performances on a Field Programmable Gate Array device, with the aim to select the highest performance architecture. The proposed designs have been tested and validated, employing official test suites released by NIST standardization body, assessing the independence from the place and route and the randomness degree of the generated output. An architecture derived from the Fibonacci-Galois Ring Oscillator has been selected and synthesized on Intel Stratix IV, supporting throughput up to 400 Mbps. The achieved entropy in the best configuration is greater than 0.995.


2015 ◽  
Vol 137 ◽  
pp. 828-836 ◽  
Author(s):  
Che-Chi Shu ◽  
Vu Tran ◽  
Jeremy Binagia ◽  
Doraiswami Ramkrishna

Sign in / Sign up

Export Citation Format

Share Document