An improved primal-dual approximation algorithm for the k-means problem with penalties

Author(s):  
Chunying Ren ◽  
Dachuan Xu ◽  
Donglei Du ◽  
Min Li

Abstract In the k-means problem with penalties, we are given a data set ${\cal D} \subseteq \mathbb{R}^\ell $ of n points where each point $j \in {\cal D}$ is associated with a penalty cost p j and an integer k. The goal is to choose a set ${\rm{C}}S \subseteq {{\cal R}^\ell }$ with |CS| ≤ k and a penalized subset ${{\cal D}_p} \subseteq {\cal D}$ to minimize the sum of the total squared distance from the points in D / D p to CS and the total penalty cost of points in D p , namely $\sum\nolimits_{j \in {\cal D}\backslash {{\cal D}_p}} {d^2}(j,{\rm{C}}S) + \sum\nolimits_{j \in {{\cal D}_p}} {p_j}$ . We employ the primal-dual technique to give a pseudo-polynomial time algorithm with an approximation ratio of (6.357+ε) for the k-means problem with penalties, improving the previous best approximation ratio 19.849+∊ for this problem given by Feng et al. in Proceedings of FAW (2019).

2020 ◽  
Vol 34 (02) ◽  
pp. 2070-2078
Author(s):  
Yasushi Kawase ◽  
Hanna Sumita

We study the problem of fairly allocating a set of indivisible goods to risk-neutral agents in a stochastic setting. We propose an (approximation) algorithm to find a stochastic allocation that maximizes the minimum utility among the agents. The algorithm runs by repeatedly finding an (approximate) allocation to maximize the total virtual utility of the agents. This implies that the problem is solvable in polynomial time when the utilities are gross-substitutes (which is a subclass of submodular). When the utilities are submodular, we can find a (1 − 1/e)-approximate solution for the problem and this is best possible unless P=NP. We also extend the problem where a stochastic allocation must satisfy the (ex ante) envy-freeness. Under this condition, we demonstrate that the problem is NP-hard even when every agent has an additive utility with a matroid constraint (which is a subclass of gross-substitutes). Furthermore, we propose a polynomial-time algorithm for the setting with a restriction that the matroid constraint is common to all agents.


2004 ◽  
Vol 14 (01n02) ◽  
pp. 85-104 ◽  
Author(s):  
XIAODONG WU ◽  
DANNY Z. CHEN ◽  
JAMES J. MASON ◽  
STEVEN R. SCHMID

Data clustering is an important theoretical topic and a sharp tool for various applications. It is a task frequently arising in geometric computing. The main objective of data clustering is to partition a given data set into clusters such that the data items within the same cluster are "more" similar to each other with respect to certain measures. In this paper, we study the pairwise data clustering problem with pairwise similarity/dissimilarity measures that need not satisfy the triangle inequality. By using a criterion, called the minimum normalized cut, we model the general pairwise data clustering problem as a graph partition problem. The graph partition problem based on minimizing the normalized cut is known to be NP-hard. For an undirected weighted graph of n vertices, we present a ((4+o(1)) In n)-approximation polynomial time algorithm for the minimum normalized cut problem; this is the first provably good approximation polynomial time algorithm for the problem. We also give a more efficient algorithm for this problem by sacrificing the approximation ratio slightly. Further, our scheme achieves a ((2+o(1)) In n)-approximation polynomial time algorithm for computing the sparsest cuts in edge-weighted and vertex-weighted undirected graphs, improving the previously best known approximation ratio by a constant factor. Some applications and implementation work of our approximation normalized cut algorithms are also discussed.


Author(s):  
Stefan Lendl ◽  
Britta Peis ◽  
Veerle Timmermans

AbstractGiven two matroids $$\mathcal {M}_{1} = (E, \mathcal {B}_{1})$$ M 1 = ( E , B 1 ) and $$\mathcal {M}_{2} = (E, \mathcal {B}_{2})$$ M 2 = ( E , B 2 ) on a common ground set E with base sets $$\mathcal {B}_1$$ B 1 and $$\mathcal {B}_2$$ B 2 , some integer $$k \in \mathbb {N}$$ k ∈ N , and two cost functions $$c_{1}, c_{2} :E \rightarrow \mathbb {R}$$ c 1 , c 2 : E → R , we consider the optimization problem to find a basis $$X \in \mathcal {B}_{1}$$ X ∈ B 1 and a basis $$Y \in \mathcal {B}_{2}$$ Y ∈ B 2 minimizing the cost $$\sum _{e\in X} c_1(e)+\sum _{e\in Y} c_2(e)$$ ∑ e ∈ X c 1 ( e ) + ∑ e ∈ Y c 2 ( e ) subject to either a lower bound constraint $$|X \cap Y| \le k$$ | X ∩ Y | ≤ k , an upper bound constraint $$|X \cap Y| \ge k$$ | X ∩ Y | ≥ k , or an equality constraint $$|X \cap Y| = k$$ | X ∩ Y | = k on the size of the intersection of the two bases X and Y. The problem with lower bound constraint turns out to be a generalization of the Recoverable Robust Matroid problem under interval uncertainty representation for which the question for a strongly polynomial-time algorithm was left as an open question in Hradovich et al. (J Comb Optim 34(2):554–573, 2017). We show that the two problems with lower and upper bound constraints on the size of the intersection can be reduced to weighted matroid intersection, and thus be solved with a strongly polynomial-time primal-dual algorithm. We also present a strongly polynomial, primal-dual algorithm that computes a minimum cost solution for every feasible size of the intersection k in one run with asymptotic running time equal to one run of Frank’s matroid intersection algorithm. Additionally, we discuss generalizations of the problems from matroids to polymatroids, and from two to three or more matroids. We obtain a strongly polynomial time algorithm for the recoverable robust polymatroid base problem with interval uncertainties.


2009 ◽  
Vol 19 (03) ◽  
pp. 267-288 ◽  
Author(s):  
MARC BENKERT ◽  
JOACHIM GUDMUNDSSON ◽  
CHRISTIAN KNAUER ◽  
RENÉ VAN OOSTRUM ◽  
ALEXANDER WOLFF

We consider the following packing problem. Let α be a fixed real in (0, 1]. We are given a bounding rectangle ρ and a set [Formula: see text] of n possibly intersecting unit disks whose centers lie in ρ. The task is to pack a set [Formula: see text] of m disjoint disks of radius α into ρ such that no disk in B intersects a disk in [Formula: see text], where m is the maximum number of unit disks that can be packed. In this paper we present a polynomial-time algorithm for α = 2/3. So far only the case of packing squares has been considered. For that case, Baur and Fekete have given a polynomial-time algorithm for α = 2/3 and have shown that the problem cannot be solved in polynomial time for any α > 13/14 unless [Formula: see text].


Author(s):  
Hadi Hosseini ◽  
Andrew Searns

The maximin share (MMS) guarantee is a desirable fairness notion for allocating indivisible goods. While MMS allocations do not always exist, several approximation techniques have been developed to ensure that all agents receive a fraction of their maximin share. We focus on an alternative approximation notion, based on the population of agents, that seeks to guarantee MMS for a fraction of agents. We show that no optimal approximation algorithm can satisfy more than a constant number of agents, and discuss the existence and computation of MMS for all but one agent and its relation to approximate MMS guarantees. We then prove the existence of allocations that guarantee MMS for 2/3 of agents, and devise a polynomial time algorithm that achieves this bound for up to nine agents. A key implication of our result is the existence of allocations that guarantee the value that an agent receives by partitioning the goods into 3n/2 bundles, improving the best known guarantee when goods are partitioned into 2n-2 bundles. Finally, we provide empirical experiments using synthetic data.


10.29007/v68w ◽  
2018 ◽  
Author(s):  
Ying Zhu ◽  
Mirek Truszczynski

We study the problem of learning the importance of preferences in preference profiles in two important cases: when individual preferences are aggregated by the ranked Pareto rule, and when they are aggregated by positional scoring rules. For the ranked Pareto rule, we provide a polynomial-time algorithm that finds a ranking of preferences such that the ranked profile correctly decides all the examples, whenever such a ranking exists. We also show that the problem to learn a ranking maximizing the number of correctly decided examples (also under the ranked Pareto rule) is NP-hard. We obtain similar results for the case of weighted profiles when positional scoring rules are used for aggregation.


Sign in / Sign up

Export Citation Format

Share Document