A Discrete Analogue of a Theorem of Makarov

1993 ◽  
Vol 2 (2) ◽  
pp. 181-199 ◽  
Author(s):  
Gregory F. Lawler

A theorem of Makarov states that the harmonic measure of a connected subset of ℝ2 is supported on a set of Hausdorff dimension one. This paper gives an analogue of this theorem for discrete harmonic measure, i.e., the hitting measure of simple random walk. It is proved that for any 1/2 < α < 1, β < α − 1/2, there is a constant k such that for any connected subset A ⊂ ℤ2 of radius n,where HA denotes discrete harmonic measure.

2020 ◽  
pp. 1-33
Author(s):  
PIETER ALLAART ◽  
DERONG KONG

Fix an alphabet $A=\{0,1,\ldots ,M\}$ with $M\in \mathbb{N}$ . The univoque set $\mathscr{U}$ of bases $q\in (1,M+1)$ in which the number $1$ has a unique expansion over the alphabet $A$ has been well studied. It has Lebesgue measure zero but Hausdorff dimension one. This paper describes how the points in the set $\mathscr{U}$ are distributed over the interval $(1,M+1)$ by determining the limit $$\begin{eqnarray}f(q):=\lim _{\unicode[STIX]{x1D6FF}\rightarrow 0}\dim _{\text{H}}(\mathscr{U}\cap (q-\unicode[STIX]{x1D6FF},q+\unicode[STIX]{x1D6FF}))\end{eqnarray}$$ for all $q\in (1,M+1)$ . We show in particular that $f(q)>0$ if and only if $q\in \overline{\mathscr{U}}\backslash \mathscr{C}$ , where $\mathscr{C}$ is an uncountable set of Hausdorff dimension zero, and $f$ is continuous at those (and only those) points where it vanishes. Furthermore, we introduce a countable family of pairwise disjoint subsets of $\mathscr{U}$ called relative bifurcation sets, and use them to give an explicit expression for the Hausdorff dimension of the intersection of $\mathscr{U}$ with any interval, answering a question of Kalle et al [On the bifurcation set of unique expansions. Acta Arith. 188 (2019), 367–399]. Finally, the methods developed in this paper are used to give a complete answer to a question of the first author [On univoque and strongly univoque sets. Adv. Math.308 (2017), 575–598] on strongly univoque sets.


1995 ◽  
Vol 15 (3) ◽  
pp. 593-619 ◽  
Author(s):  
Russell Lyons ◽  
Robin Pemantle ◽  
Yuval Peres

AbstractWe consider simple random walk on the family treeTof a nondegenerate supercritical Galton—Watson branching process and show that the resulting harmonic measure has a.s. strictly smaller Hausdorff dimension than that of the whole boundary ofT. Concretely, this implies that an exponentially small fraction of thenth level ofTcarries most of the harmonic measure. First-order asymptotics for the rate of escape, Green function and the Avez entropy of the random walk are also determined. Ergodic theory of the shift on the space of random walk paths on trees is the main tool; the key observation is that iterating the transformation induced from this shift to the subset of ‘exit points’ yields a nonintersecting path sampled from harmonic measure.


1962 ◽  
Vol 58 (4) ◽  
pp. 708-709 ◽  
Author(s):  
J. Keilson

We consider a random walk defined in the following way. We have a set of states indexed by n where n takes on all negative and positive integral values and zero. When we are at state n, there is a probability per unit time λ of going to n + 1, and a probability per unit time λ of going to n − l. Let us start out at n = 0, and study Wn(t), the probability of being at n at time t. Continuity of probability requires that whence since G(s, 0) = 1, we have It follows from the well-known result .


1976 ◽  
Vol 13 (02) ◽  
pp. 355-356 ◽  
Author(s):  
Aidan Sudbury

Particles are situated on a rectangular lattice and proceed to invade each other's territory. When they are equally competitive this creates larger and larger blocks of one type as time goes by. It is shown that the expected size of such blocks is equal to the expected range of a simple random walk.


1996 ◽  
Vol 33 (1) ◽  
pp. 122-126
Author(s):  
Torgny Lindvall ◽  
L. C. G. Rogers

The use of Mineka coupling is extended to a case with a continuous state space: an efficient coupling of random walks S and S' in can be made such that S' — S is virtually a one-dimensional simple random walk. This insight settles a zero-two law of ergodicity. One more proof of Blackwell's renewal theorem is also presented.


1995 ◽  
Vol 15 (1) ◽  
pp. 77-97 ◽  
Author(s):  
Irene Hueter ◽  
Steven P. Lalley

Let A1, A2,…,Ak be a finite set of contractive, affine, invertible self-mappings of R2. A compact subset Λ of R2 is said to be self-affine with affinitiesA1, A2,…,Ak ifIt is known [8] that for any such set of contractive affine mappings there is a unique (compact) SA set with these affinities. When the affine mappings A1, A2,…,Ak are similarity transformations, the set Λ is said to be self-similar. Self-similar sets are well understood, at least when the images Ai(Λ) have ‘small’ overlap: there is a simple and explicit formula for the Hausdorff and box dimensions [12, 10]; these are always equal; and the δ-dimensional Hausdorff measure of such a set (where δ is the Hausdorff dimension) is always positive and finite.


2021 ◽  
Author(s):  
Thi Thi Zin ◽  
Pyke Tin ◽  
Pann Thinzar Seint ◽  
Kosuke Sumi ◽  
Ikuo Kobayashi ◽  
...  

2010 ◽  
Vol 149 (2) ◽  
pp. 351-372
Author(s):  
WOUTER KAGER ◽  
LIONEL LEVINE

AbstractInternal diffusion-limited aggregation is a growth model based on random walk in ℤd. We study how the shape of the aggregate depends on the law of the underlying walk, focusing on a family of walks in ℤ2 for which the limiting shape is a diamond. Certain of these walks—those with a directional bias toward the origin—have at most logarithmic fluctuations around the limiting shape. This contrasts with the simple random walk, where the limiting shape is a disk and the best known bound on the fluctuations, due to Lawler, is a power law. Our walks enjoy a uniform layering property which simplifies many of the proofs.


Sign in / Sign up

Export Citation Format

Share Document