Falconer's formula for the Hausdorff dimension of a self-affine set in R2

1995 ◽  
Vol 15 (1) ◽  
pp. 77-97 ◽  
Author(s):  
Irene Hueter ◽  
Steven P. Lalley

Let A1, A2,…,Ak be a finite set of contractive, affine, invertible self-mappings of R2. A compact subset Λ of R2 is said to be self-affine with affinitiesA1, A2,…,Ak ifIt is known [8] that for any such set of contractive affine mappings there is a unique (compact) SA set with these affinities. When the affine mappings A1, A2,…,Ak are similarity transformations, the set Λ is said to be self-similar. Self-similar sets are well understood, at least when the images Ai(Λ) have ‘small’ overlap: there is a simple and explicit formula for the Hausdorff and box dimensions [12, 10]; these are always equal; and the δ-dimensional Hausdorff measure of such a set (where δ is the Hausdorff dimension) is always positive and finite.

Fractals ◽  
2020 ◽  
Vol 28 (03) ◽  
pp. 2050053
Author(s):  
XIAOFANG JIANG ◽  
QINGHUI LIU ◽  
GUIZHEN WANG ◽  
ZHIYING WEN

Let [Formula: see text] be the class of Moran sets with integer [Formula: see text] and real [Formula: see text] satisfying [Formula: see text]. It is well known that the Hausdorff dimension of any set in this class is [Formula: see text]. We show that for any [Formula: see text], [Formula: see text] where [Formula: see text] denotes [Formula: see text]-dimensional Hausdorff measure of [Formula: see text]. For any [Formula: see text] with [Formula: see text] there exists a self-similar set [Formula: see text] such that [Formula: see text].


2019 ◽  
Vol 40 (12) ◽  
pp. 3217-3235 ◽  
Author(s):  
AYREENA BAKHTAWAR ◽  
PHILIP BOS ◽  
MUMTAZ HUSSAIN

Let $\unicode[STIX]{x1D6F9}:[1,\infty )\rightarrow \mathbb{R}_{+}$ be a non-decreasing function, $a_{n}(x)$ the $n$th partial quotient of $x$ and $q_{n}(x)$ the denominator of the $n$th convergent. The set of $\unicode[STIX]{x1D6F9}$-Dirichlet non-improvable numbers, $$\begin{eqnarray}G(\unicode[STIX]{x1D6F9}):=\{x\in [0,1):a_{n}(x)a_{n+1}(x)>\unicode[STIX]{x1D6F9}(q_{n}(x))\text{ for infinitely many }n\in \mathbb{N}\},\end{eqnarray}$$ is related with the classical set of $1/q^{2}\unicode[STIX]{x1D6F9}(q)$-approximable numbers ${\mathcal{K}}(\unicode[STIX]{x1D6F9})$ in the sense that ${\mathcal{K}}(3\unicode[STIX]{x1D6F9})\subset G(\unicode[STIX]{x1D6F9})$. Both of these sets enjoy the same $s$-dimensional Hausdorff measure criterion for $s\in (0,1)$. We prove that the set $G(\unicode[STIX]{x1D6F9})\setminus {\mathcal{K}}(3\unicode[STIX]{x1D6F9})$ is uncountable by proving that its Hausdorff dimension is the same as that for the sets ${\mathcal{K}}(\unicode[STIX]{x1D6F9})$ and $G(\unicode[STIX]{x1D6F9})$. This gives an affirmative answer to a question raised by Hussain et al [Hausdorff measure of sets of Dirichlet non-improvable numbers. Mathematika 64(2) (2018), 502–518].


2009 ◽  
Vol 29 (1) ◽  
pp. 201-221 ◽  
Author(s):  
YUVAL PERES ◽  
PABLO SHMERKIN

AbstractLet Ca be the central Cantor set obtained by removing a central interval of length 1−2a from the unit interval, and then continuing this process inductively on each of the remaining two intervals. We prove that if log b/log a is irrational, then where dim is Hausdorff dimension. More generally, given two self-similar sets K,K′ in ℝ and a scaling parameter s>0, if the dimension of the arithmetic sum K+sK′ is strictly smaller than dim (K)+dim (K′)≤1 (‘geometric resonance’), then there exists r<1 such that all contraction ratios of the similitudes defining K and K′ are powers of r (‘algebraic resonance’). Our method also yields a new result on the projections of planar self-similar sets generated by an iterated function system that includes a scaled irrational rotation.


1994 ◽  
Vol 116 (3) ◽  
pp. 513-526 ◽  
Author(s):  
Yuval Peres

AbstractWe show that the self-affine sets considered by McMullen in [11] and by Bedford in [1] have infinite Hausdorff measure in their dimension, except in the (rare) cases where the Hausdorff dimension coincides with the Minkowski (≡ box) dimension. More precisely, the Hausdorff measure of such a self-affine set K is infinite in the gauge(where γ is the Hausdorff dimension of K, and c > 0 is small). The Hausdorff measure of K becomes zero if 2 is replaced by any smaller number in the formula for the gauge ø.


2008 ◽  
Vol 28 (5) ◽  
pp. 1635-1655 ◽  
Author(s):  
L. OLSEN

AbstractLetNbe an integer withN≥2 and letXbe a compact subset of ℝd. If$\mathsf {S}=(S_{1},\ldots ,S_{N})$is a list of contracting similaritiesSi:X→X, then we will write$K_{\mathsf {S}}$for the self-similar set associated with$\mathsf {S}$, and we will writeMfor the family of all lists$\mathsf {S}$satisfying the strong separation condition. In this paper we show that the maps(1)and(2)are continuous; here$\dim _{\mathsf {H}}$denotes the Hausdorff dimension, ℋsdenotes thes-dimensional Hausdorff measure and 𝒮sdenotes thes-dimensional spherical Hausdorff measure. In fact, we prove a more general continuity result which, amongst other things, implies that the maps in (1) and (2) are continuous.


Author(s):  
Balázs Bárány ◽  
Károly Simon ◽  
István Kolossváry ◽  
Michał Rams

This paper considers self-conformal iterated function systems (IFSs) on the real line whose first level cylinders overlap. In the space of self-conformal IFSs, we show that generically (in topological sense) if the attractor of such a system has Hausdorff dimension less than 1 then it has zero appropriate dimensional Hausdorff measure and its Assouad dimension is equal to 1. Our main contribution is in showing that if the cylinders intersect then the IFS generically does not satisfy the weak separation property and hence, we may apply a recent result of Angelevska, Käenmäki and Troscheit. This phenomenon holds for transversal families (in particular for the translation family) typically, in the self-similar case, in both topological and in measure theoretical sense, and in the more general self-conformal case in the topological sense.


1985 ◽  
Vol 26 (2) ◽  
pp. 115-120 ◽  
Author(s):  
Murali Rao

Let D be a domain in Euclidean space of d dimensions and K a compact subset of D. The well known Harnack inequality assures the existence of a positive constant A depending only on D and K such that (l/A)u(x)<u(y)<Au(x) for all x and y in K and all positive harmonic functions u on D. In this we obtain a global integral version of this inequality under geometrical conditions on the domain. The result is the following: suppose D is a Lipschitz domain satisfying the uniform exterior sphere condition—stated in Section 2. If u is harmonic in D with continuous boundary data f thenwhere ds is the d — 1 dimensional Hausdorff measure on the boundary ժD. A large class of domains satisfy this condition. Examples are C2-domains, convex domains, etc.


Author(s):  
Stuart A. Burrell

AbstractThis paper concerns the intermediate dimensions, a spectrum of dimensions that interpolate between the Hausdorff and box dimensions. Potential-theoretic methods are used to produce dimension bounds for images of sets under Hölder maps and certain stochastic processes. We apply this to compute the almost-sure value of the dimension of Borel sets under index-$$\alpha $$ α fractional Brownian motion in terms of dimension profiles defined using capacities. As a corollary, this establishes continuity of the profiles for Borel sets and allows us to obtain an explicit condition showing how the Hausdorff dimension of a set may influence the typical box dimension of Hölder images such as projections. The methods used propose a general strategy for related problems; dimensional information about a set may be learned from analysing particular fractional Brownian images of that set. To conclude, we obtain bounds on the Hausdorff dimension of exceptional sets, with respect to intermediate dimensions, in the setting of projections.


2004 ◽  
Vol 56 (3) ◽  
pp. 529-552 ◽  
Author(s):  
A. Martínez-Finkelshtein ◽  
V. Maymeskul ◽  
E. A. Rakhmanov ◽  
E. B. Saff

AbstractWe consider the s-energy for point sets 𝒵 = {𝒵k,n: k = 0, …, n} on certain compact sets Γ in ℝd having finite one-dimensional Hausdorff measure,is the Riesz kernel. Asymptotics for the minimum s-energy and the distribution of minimizing sequences of points is studied. In particular, we prove that, for s ≥ 1, the minimizing nodes for a rectifiable Jordan curve Γ distribute asymptotically uniformly with respect to arclength as n → ∞.


2019 ◽  
Vol 85 (1) ◽  
pp. 486-510
Author(s):  
RUPERT HÖLZL ◽  
WOLFGANG MERKLE ◽  
JOSEPH MILLER ◽  
FRANK STEPHAN ◽  
LIANG YU

AbstractWe prove that the continuous function${\rm{\hat \Omega }}:2^\omega \to $ that is defined via$X \mapsto \mathop \sum \limits_n 2^{ - K\left( {Xn} \right)} $ for all $X \in {2^\omega }$ is differentiable exactly at the Martin-Löf random reals with the derivative having value 0; that it is nowhere monotonic; and that $\mathop \smallint \nolimits _0^1{\rm{\hat{\Omega }}}\left( X \right)\,{\rm{d}}X$ is a left-c.e. $wtt$-complete real having effective Hausdorff dimension ${1 / 2}$.We further investigate the algorithmic properties of ${\rm{\hat{\Omega }}}$. For example, we show that the maximal value of ${\rm{\hat{\Omega }}}$ must be random, the minimal value must be Turing complete, and that ${\rm{\hat{\Omega }}}\left( X \right) \oplus X{ \ge _T}\emptyset \prime$ for every X. We also obtain some machine-dependent results, including that for every $\varepsilon > 0$, there is a universal machine V such that ${{\rm{\hat{\Omega }}}_V}$ maps every real X having effective Hausdorff dimension greater than ε to a real of effective Hausdorff dimension 0 with the property that $X{ \le _{tt}}{{\rm{\hat{\Omega }}}_V}\left( X \right)$; and that there is a real X and a universal machine V such that ${{\rm{\Omega }}_V}\left( X \right)$ is rational.


Sign in / Sign up

Export Citation Format

Share Document