scholarly journals The Harmonious Chromatic Number of Almost All Trees

1995 ◽  
Vol 4 (1) ◽  
pp. 31-46 ◽  
Author(s):  
Keith Edwards

A harmonious colouring of a simple graph G is a proper vertex colouring such that each pair of colours appears together on at most one edge. The harmonious chromatic number h(G) is the least number of colours in such a colouring.For any positive integer m, let Q(m) be the least positive integer k such that ≥ m. We show that for almost all unlabelled, unrooted trees T, h(T) = Q(m), where m is the number of edges of T.

1996 ◽  
Vol 5 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Keith Edwards

A harmonious colouring of a simple graph G is a proper vertex colouring such that each pair of colours appears together on at most one edge. The harmonious chromatic number h(G) is the least number of colours in such a colouring. Let d be a fixed positive integer. We show that there is a natural number N(d) such that if T is any tree with m ≥ N(d) edges and maximum degree at most d, then the harmonious chromatic number h(T) is k or k + 1, where k is the least positive integer such that . We also give a polynomial time algorithm for determining the harmonious chromatic number of a tree with maximum degree at most d.


10.37236/9 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
A. Aflaki ◽  
S. Akbari ◽  
K.J. Edwards ◽  
D.S. Eskandani ◽  
M. Jamaali ◽  
...  

Let $G$ be a simple graph and $\Delta(G)$ denote the maximum degree of $G$. A harmonious colouring of $G$ is a proper vertex colouring such that each pair of colours appears together on at most one edge. The harmonious chromatic number $h(G)$ is the least number of colours in such a colouring. In this paper it is shown that if $T$ is a tree of order $n$ and $\Delta(T)\geq\frac{n}{2}$, then there exists a harmonious colouring of $T$ with $\Delta(T)+1$ colours such that every colour is used at most twice. Thus $h(T)=\Delta(T)+1$. Moreover, we prove that if $T$ is a tree of order $n$ and $\Delta(T) \le \Big\lceil\frac{n}{2}\Big\rceil$, then there exists a harmonious colouring of $T$ with $\Big\lceil \frac{n}{2}\Big \rceil +1$ colours such that every colour is used at most twice. Thus $h(T)\leq \Big\lceil \frac{n}{2} \Big\rceil +1$.


10.37236/947 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Mark E. Watkins ◽  
Xiangqian Zhou

The distinguishing number $\Delta(X)$ of a graph $X$ is the least positive integer $n$ for which there exists a function $f:V(X)\to\{0,1,2,\cdots,n-1\}$ such that no nonidentity element of $\hbox{Aut}(X)$ fixes (setwise) every inverse image $f^{-1}(k)$, $k\in\{0,1,2,\cdots,n-1\}$. All infinite, locally finite trees without pendant vertices are shown to be 2-distinguishable. A proof is indicated that extends 2-distinguishability to locally countable trees without pendant vertices. It is shown that every infinite, locally finite tree $T$ with finite distinguishing number contains a finite subtree $J$ such that $\Delta(J)=\Delta(T)$. Analogous results are obtained for the distinguishing chromatic number, namely the least positive integer $n$ such that the function $f$ is also a proper vertex-coloring.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 393
Author(s):  
Franklin Thamil Selvi.M.S ◽  
Amutha A ◽  
Antony Mary A

Given a simple graph , a harmonious coloring of  is the proper vertex coloring such that each pair of colors seems to appears together on at most one edge. The harmonious chromatic number of , denoted by  is the minimal number of colors in a harmonious coloring of . In this paper we have determined the harmonious chromatic number of some classes of Circulant Networks.  


2019 ◽  
Vol 28 (5) ◽  
pp. 768-776
Author(s):  
Allan Lo ◽  
Nicolás Sanhueza-Matamala

AbstractThe strong chromatic number χs(G) of a graph G on n vertices is the least number r with the following property: after adding $r\lceil n/r\rceil-n$ isolated vertices to G and taking the union with any collection of spanning disjoint copies of Kr in the same vertex set, the resulting graph has a proper vertex colouring with r colours. We show that for every c > 0 and every graph G on n vertices with Δ(G) ≥ cn, χs(G) ≤ (2+o(1))Δ(G), which is asymptotically best possible.


2019 ◽  
Vol 39 (5) ◽  
pp. 623-643
Author(s):  
Ryan C. Bunge

Consider a tripartite graph to be any simple graph that admits a proper vertex coloring in at most 3 colors. Let \(G\) be a tripartite graph with \(n\) edges, one of which is a pendent edge. This paper introduces a labeling on such a graph \(G\) used to achieve 1-rotational \(G\)-decompositions of \(K_{2nt}\) for any positive integer \(t\). It is also shown that if \(G\) with a pendent edge is the result of adding an edge to a path on \(n\) vertices, then \(G\) admits such a labeling.


2008 ◽  
Vol 17 (2) ◽  
pp. 265-270 ◽  
Author(s):  
H. A. KIERSTEAD ◽  
A. V. KOSTOCHKA

A proper vertex colouring of a graph is equitable if the sizes of colour classes differ by at most one. We present a new shorter proof of the celebrated Hajnal–Szemerédi theorem: for every positive integer r, every graph with maximum degree at most r has an equitable colouring with r+1 colours. The proof yields a polynomial time algorithm for such colourings.


2001 ◽  
Vol 10 (4) ◽  
pp. 345-347 ◽  
Author(s):  
P. E. HAXELL

Let k be a positive integer and let G be a graph. Suppose a list S(v) of positive integers is assigned to each vertex v, such that(1) [mid ]S(v)[mid ] = 2k for each vertex v of G, and(2) for each vertex v, and each c ∈ S(v), the number of neighbours w of v for which c ∈ S(w) is at most k.Then we prove that there exists a proper vertex colouring f of G such that f(v) ∈ S(v) for each v ∈ V(G). This proves a weak version of a conjecture of Reed.


2019 ◽  
Vol 5 (2) ◽  
pp. 69-75
Author(s):  
Marsidi Marsidi ◽  
Ika Hesti Agustin

A graph  in this paper is nontrivial, finite, connected, simple, and undirected. Graph  consists of a vertex set and edge set. Let u,v be two elements in vertex set, and q is the cardinality of edge set in G, a bijective function from the edge set to the first q natural number is called a vertex local antimagic edge labelling if for any two adjacent vertices and , the weight of  is not equal with the weight of , where the weight of  (denoted by ) is the sum of labels of edges that are incident to . Furthermore, any vertex local antimagic edge labelling induces a proper vertex colouring on where  is the colour on the vertex . The vertex local antimagic chromatic number  is the minimum number of colours taken over all colourings induced by vertex local antimagic edge labelling of . In this paper, we discuss about the vertex local antimagic chromatic number on disjoint union of some family graphs, namely path, cycle, star, and friendship, and also determine the lower bound of vertex local antimagic chromatic number of disjoint union graphs. The chromatic numbers of disjoint union graph in this paper attend the lower bound.


10.37236/599 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Jakub Przybyło ◽  
Mariusz Woźniak

Suppose the edges and the vertices of a simple graph $G$ are assigned $k$-element lists of real weights. By choosing a representative of each list, we specify a vertex colouring, where for each vertex its colour is defined as the sum of the weights of its incident edges and the weight of the vertex itself. How long lists ensures a choice implying a proper vertex colouring for any graph? Is there any finite bound or maybe already lists of length two are sufficient? We prove that $2$-element lists are enough for trees, wheels, unicyclic and complete graphs, while the ones of length $3$ are sufficient for complete bipartite graphs. Our main tool is an algebraic theorem by Alon called Combinatorial Nullstellensatz.


Sign in / Sign up

Export Citation Format

Share Document