scholarly journals On Harmonious Colouring of Trees

10.37236/9 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
A. Aflaki ◽  
S. Akbari ◽  
K.J. Edwards ◽  
D.S. Eskandani ◽  
M. Jamaali ◽  
...  

Let $G$ be a simple graph and $\Delta(G)$ denote the maximum degree of $G$. A harmonious colouring of $G$ is a proper vertex colouring such that each pair of colours appears together on at most one edge. The harmonious chromatic number $h(G)$ is the least number of colours in such a colouring. In this paper it is shown that if $T$ is a tree of order $n$ and $\Delta(T)\geq\frac{n}{2}$, then there exists a harmonious colouring of $T$ with $\Delta(T)+1$ colours such that every colour is used at most twice. Thus $h(T)=\Delta(T)+1$. Moreover, we prove that if $T$ is a tree of order $n$ and $\Delta(T) \le \Big\lceil\frac{n}{2}\Big\rceil$, then there exists a harmonious colouring of $T$ with $\Big\lceil \frac{n}{2}\Big \rceil +1$ colours such that every colour is used at most twice. Thus $h(T)\leq \Big\lceil \frac{n}{2} \Big\rceil +1$.

1996 ◽  
Vol 5 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Keith Edwards

A harmonious colouring of a simple graph G is a proper vertex colouring such that each pair of colours appears together on at most one edge. The harmonious chromatic number h(G) is the least number of colours in such a colouring. Let d be a fixed positive integer. We show that there is a natural number N(d) such that if T is any tree with m ≥ N(d) edges and maximum degree at most d, then the harmonious chromatic number h(T) is k or k + 1, where k is the least positive integer such that . We also give a polynomial time algorithm for determining the harmonious chromatic number of a tree with maximum degree at most d.


1995 ◽  
Vol 4 (1) ◽  
pp. 31-46 ◽  
Author(s):  
Keith Edwards

A harmonious colouring of a simple graph G is a proper vertex colouring such that each pair of colours appears together on at most one edge. The harmonious chromatic number h(G) is the least number of colours in such a colouring.For any positive integer m, let Q(m) be the least positive integer k such that ≥ m. We show that for almost all unlabelled, unrooted trees T, h(T) = Q(m), where m is the number of edges of T.


10.37236/6362 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Wilfried Imrich ◽  
Rafał Kalinowski ◽  
Monika Pilśniak ◽  
Mohammad Hadi Shekarriz

We consider infinite graphs. The distinguishing number $D(G)$ of a graph $G$ is the minimum number of colours in a vertex colouring of $G$ that is preserved only by the trivial automorphism. An analogous invariant for edge colourings is called the distinguishing index, denoted by $D'(G)$. We prove that $D'(G)\leq D(G)+1$. For proper colourings, we study relevant invariants called the distinguishing chromatic number $\chi_D(G)$, and the distinguishing chromatic index $\chi'_D(G)$, for vertex and edge colourings, respectively. We show that $\chi_D(G)\leq 2\Delta(G)-1$ for graphs with a finite maximum degree $\Delta(G)$, and we obtain substantially lower bounds for some classes of graphs with infinite motion. We also show that $\chi'_D(G)\leq \chi'(G)+1$, where $\chi'(G)$ is the chromatic index of $G$, and we prove a similar result $\chi''_D(G)\leq \chi''(G)+1$ for proper total colourings. A number of conjectures are formulated.


Author(s):  
Vida Dujmović ◽  
Louis Esperet ◽  
Pat Morin ◽  
Bartosz Walczak ◽  
David R. Wood

Abstract A (not necessarily proper) vertex colouring of a graph has clustering c if every monochromatic component has at most c vertices. We prove that planar graphs with maximum degree $\Delta$ are 3-colourable with clustering $O(\Delta^2)$ . The previous best bound was $O(\Delta^{37})$ . This result for planar graphs generalises to graphs that can be drawn on a surface of bounded Euler genus with a bounded number of crossings per edge. We then prove that graphs with maximum degree $\Delta$ that exclude a fixed minor are 3-colourable with clustering $O(\Delta^5)$ . The best previous bound for this result was exponential in $\Delta$ .


10.37236/632 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Landon Rabern

We prove that if $G$ is the line graph of a multigraph, then the chromatic number $\chi(G)$ of $G$ is at most $\max\left\{\omega(G), \frac{7\Delta(G) + 10}{8}\right\}$ where $\omega(G)$ and $\Delta(G)$ are the clique number and the maximum degree of $G$, respectively. Thus Brooks' Theorem holds for line graphs of multigraphs in much stronger form. Using similar methods we then prove that if $G$ is the line graph of a multigraph with $\chi(G) \geq \Delta(G) \geq 9$, then $G$ contains a clique on $\Delta(G)$ vertices. Thus the Borodin-Kostochka Conjecture holds for line graphs of multigraphs.


10.37236/7353 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Jinko Kanno ◽  
Songling Shan

Let $G$ be a simple graph, and let $\Delta(G)$ and $\chi'(G)$ denote the maximum degree and chromatic index of $G$, respectively. Vizing proved that $\chi'(G)=\Delta(G)$ or $\chi'(G)=\Delta(G)+1$. We say $G$ is $\Delta$-critical if $\chi'(G)=\Delta(G)+1$ and $\chi'(H)<\chi'(G)$ for every proper subgraph $H$ of $G$. In 1968, Vizing conjectured that if $G$ is a $\Delta$-critical graph, then  $G$ has a 2-factor. Let $G$ be an $n$-vertex $\Delta$-critical graph. It was proved that if $\Delta(G)\ge n/2$, then $G$ has a 2-factor; and that if $\Delta(G)\ge 2n/3+13$, then $G$  has a hamiltonian cycle, and thus a 2-factor. It is well known that every 2-tough graph with at least three vertices has a 2-factor. We investigate the existence of a 2-factor in a $\Delta$-critical graph under "moderate" given toughness and  maximum degree conditions. In particular, we show that  if $G$ is an  $n$-vertex $\Delta$-critical graph with toughness at least 3/2 and with maximum degree at least $n/3$, then $G$ has a 2-factor. We also construct a family of graphs that have order $n$, maximum degree $n-1$, toughness at least $3/2$, but have no 2-factor. This implies that the $\Delta$-criticality in the result is needed. In addition, we develop new techniques in proving the existence of 2-factors in graphs.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 393
Author(s):  
Franklin Thamil Selvi.M.S ◽  
Amutha A ◽  
Antony Mary A

Given a simple graph , a harmonious coloring of  is the proper vertex coloring such that each pair of colors seems to appears together on at most one edge. The harmonious chromatic number of , denoted by  is the minimal number of colors in a harmonious coloring of . In this paper we have determined the harmonious chromatic number of some classes of Circulant Networks.  


2018 ◽  
Vol 10 (02) ◽  
pp. 1850018
Author(s):  
Yafang Hu ◽  
Weifan Wang

A [Formula: see text]-distance vertex-distinguishing total coloring of a graph [Formula: see text] is a proper total coloring of [Formula: see text] such that any pair of vertices at distance [Formula: see text] have distinct sets of colors. The [Formula: see text]-distance vertex-distinguishing total chromatic number [Formula: see text] of [Formula: see text] is the minimum number of colors needed for a [Formula: see text]-distance vertex-distinguishing total coloring of [Formula: see text]. In this paper, we determine the [Formula: see text]-distance vertex-distinguishing total chromatic number of some graphs such as paths, cycles, wheels, trees, unicycle graphs, [Formula: see text], and [Formula: see text]. We conjecture that every simple graph [Formula: see text] with maximum degree [Formula: see text] satisfies [Formula: see text].


2019 ◽  
Vol 28 (5) ◽  
pp. 768-776
Author(s):  
Allan Lo ◽  
Nicolás Sanhueza-Matamala

AbstractThe strong chromatic number χs(G) of a graph G on n vertices is the least number r with the following property: after adding $r\lceil n/r\rceil-n$ isolated vertices to G and taking the union with any collection of spanning disjoint copies of Kr in the same vertex set, the resulting graph has a proper vertex colouring with r colours. We show that for every c > 0 and every graph G on n vertices with Δ(G) ≥ cn, χs(G) ≤ (2+o(1))Δ(G), which is asymptotically best possible.


Author(s):  
H. P. Yap ◽  
K. H. Chew

AbstractWe prove Theorem 1: suppose G is a simple graph of order n having Δ(G) = n − k where k ≥ 5 and n ≥ max (13, 3k −3). If G contains an independent set of k − 3 vertices, then the TCC (Total Colouring Conjecture) is true. Applying Theorem 1, we also prove that the TCC is true for any simple graph G of order n having Δ(G) = n −5. The latter result together with some earlier results confirm that the TCC is true for all simple graphs whose maximum degree is at most four and for all simple graphs of order n having maximum degree at least n − 5.


Sign in / Sign up

Export Citation Format

Share Document