scholarly journals On 1-rotational decompositions of complete graphs into tripartite graphs

2019 ◽  
Vol 39 (5) ◽  
pp. 623-643
Author(s):  
Ryan C. Bunge

Consider a tripartite graph to be any simple graph that admits a proper vertex coloring in at most 3 colors. Let \(G\) be a tripartite graph with \(n\) edges, one of which is a pendent edge. This paper introduces a labeling on such a graph \(G\) used to achieve 1-rotational \(G\)-decompositions of \(K_{2nt}\) for any positive integer \(t\). It is also shown that if \(G\) with a pendent edge is the result of adding an edge to a path on \(n\) vertices, then \(G\) admits such a labeling.

10.37236/947 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Mark E. Watkins ◽  
Xiangqian Zhou

The distinguishing number $\Delta(X)$ of a graph $X$ is the least positive integer $n$ for which there exists a function $f:V(X)\to\{0,1,2,\cdots,n-1\}$ such that no nonidentity element of $\hbox{Aut}(X)$ fixes (setwise) every inverse image $f^{-1}(k)$, $k\in\{0,1,2,\cdots,n-1\}$. All infinite, locally finite trees without pendant vertices are shown to be 2-distinguishable. A proof is indicated that extends 2-distinguishability to locally countable trees without pendant vertices. It is shown that every infinite, locally finite tree $T$ with finite distinguishing number contains a finite subtree $J$ such that $\Delta(J)=\Delta(T)$. Analogous results are obtained for the distinguishing chromatic number, namely the least positive integer $n$ such that the function $f$ is also a proper vertex-coloring.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 393
Author(s):  
Franklin Thamil Selvi.M.S ◽  
Amutha A ◽  
Antony Mary A

Given a simple graph , a harmonious coloring of  is the proper vertex coloring such that each pair of colors seems to appears together on at most one edge. The harmonious chromatic number of , denoted by  is the minimal number of colors in a harmonious coloring of . In this paper we have determined the harmonious chromatic number of some classes of Circulant Networks.  


1996 ◽  
Vol 5 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Keith Edwards

A harmonious colouring of a simple graph G is a proper vertex colouring such that each pair of colours appears together on at most one edge. The harmonious chromatic number h(G) is the least number of colours in such a colouring. Let d be a fixed positive integer. We show that there is a natural number N(d) such that if T is any tree with m ≥ N(d) edges and maximum degree at most d, then the harmonious chromatic number h(T) is k or k + 1, where k is the least positive integer such that . We also give a polynomial time algorithm for determining the harmonious chromatic number of a tree with maximum degree at most d.


10.37236/198 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Ryan Martin ◽  
Yi Zhao

For any positive real number $\gamma$ and any positive integer $h$, there is $N_0$ such that the following holds. Let $N\ge N_0$ be such that $N$ is divisible by $h$. If $G$ is a tripartite graph with $N$ vertices in each vertex class such that every vertex is adjacent to at least $(2/3+ \gamma) N$ vertices in each of the other classes, then $G$ can be tiled perfectly by copies of $K_{h,h,h}$. This extends the work in [Discrete Math. 254 (2002), 289–308] and also gives a sufficient condition for tiling by any fixed 3-colorable graph. Furthermore, we show that the minimum-degree $(2/3+ \gamma) N$ in our result cannot be replaced by $2N/3+ h-2$.


1995 ◽  
Vol 4 (1) ◽  
pp. 31-46 ◽  
Author(s):  
Keith Edwards

A harmonious colouring of a simple graph G is a proper vertex colouring such that each pair of colours appears together on at most one edge. The harmonious chromatic number h(G) is the least number of colours in such a colouring.For any positive integer m, let Q(m) be the least positive integer k such that ≥ m. We show that for almost all unlabelled, unrooted trees T, h(T) = Q(m), where m is the number of edges of T.


10.37236/599 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Jakub Przybyło ◽  
Mariusz Woźniak

Suppose the edges and the vertices of a simple graph $G$ are assigned $k$-element lists of real weights. By choosing a representative of each list, we specify a vertex colouring, where for each vertex its colour is defined as the sum of the weights of its incident edges and the weight of the vertex itself. How long lists ensures a choice implying a proper vertex colouring for any graph? Is there any finite bound or maybe already lists of length two are sufficient? We prove that $2$-element lists are enough for trees, wheels, unicyclic and complete graphs, while the ones of length $3$ are sufficient for complete bipartite graphs. Our main tool is an algebraic theorem by Alon called Combinatorial Nullstellensatz.


Author(s):  
Fairouz Beggas ◽  
Hamamache Kheddouci ◽  
Walid Marweni

In this paper, we introduce and study a new coloring problem of graphs called the double total dominator coloring. A double total dominator coloring of a graph [Formula: see text] with minimum degree at least 2 is a proper vertex coloring of [Formula: see text] such that each vertex has to dominate at least two color classes. The minimum number of colors among all double total dominator coloring of [Formula: see text] is called the double total dominator chromatic number, denoted by [Formula: see text]. Therefore, we establish the close relationship between the double total dominator chromatic number [Formula: see text] and the double total domination number [Formula: see text]. We prove the NP-completeness of the problem. We also examine the effects on [Formula: see text] when [Formula: see text] is modified by some operations. Finally, we discuss the [Formula: see text] number of square of trees by giving some bounds.


2017 ◽  
Vol 09 (01) ◽  
pp. 1750014 ◽  
Author(s):  
Johan Kok ◽  
N. K. Sudev ◽  
U. Mary

Let [Formula: see text] be a finite and simple undirected connected graph of order [Formula: see text] and let [Formula: see text] be a proper vertex coloring of [Formula: see text]. Denote [Formula: see text] simply, [Formula: see text]. In this paper, we introduce a variation of the well-known Zagreb indices by utilizing the parameter [Formula: see text] instead of the invariant [Formula: see text] for all vertices of [Formula: see text]. The new indices are called chromatic Zagreb indices. We study these new indices for certain classes of graphs and introduce the notion of chromatically stable graphs.


Author(s):  
Nurdin Hinding ◽  
Hye Kyung Kim ◽  
Nurtiti Sunusi ◽  
Riskawati Mise

For a simple graph G with a vertex set V G and an edge set E G , a labeling f : V G ∪ ​ E G ⟶ 1,2 , ⋯ , k is called a vertex irregular total k − labeling of G if for any two different vertices x and y in V G we have w t x ≠ w t y where w t x = f x + ∑ u ∈ V G f x u . The smallest positive integer k such that G has a vertex irregular total k − labeling is called the total vertex irregularity strength of G , denoted by tvs G . The lower bound of tvs G for any graph G have been found by Baca et. al. In this paper, we determined the exact value of the total vertex irregularity strength of the hexagonal cluster graph on n cluster for n ≥ 2 . Moreover, we show that the total vertex irregularity strength of the hexagonal cluster graph on n cluster is 3 n 2 + 1 / 2 .


Sign in / Sign up

Export Citation Format

Share Document