Local Anti-Ramsey Numbers of Graphs

2003 ◽  
Vol 12 (5-6) ◽  
pp. 495-511 ◽  
Author(s):  
Maria Axenovich ◽  
Tao Jiang ◽  
Z Tuza

A subgraph H in an edge-colouring is properly coloured if incident edges of H are assigned different colours, and H is rainbow if no two edges of H are assigned the same colour. We study properly coloured subgraphs and rainbow subgraphs forced in edge-colourings of complete graphs in which each vertex is incident to a large number of colours.

2012 ◽  
Vol 21 (1-2) ◽  
pp. 229-253 ◽  
Author(s):  
WILLIAM B. KINNERSLEY ◽  
KEVIN G. MILANS ◽  
DOUGLAS B. WEST

Let HG mean that every s-colouring of E(H) produces a monochromatic copy of G in some colour class. Let the s-colour degree Ramsey number of a graph G, written RΔ(G; s), be min{Δ(H): HG}. If T is a tree in which one vertex has degree at most k and all others have degree at most ⌈k/2⌉, then RΔ(T; s) = s(k − 1) + ϵ, where ϵ = 1 when k is odd and ϵ = 0 when k is even. For general trees, RΔ(T; s) ≤ 2s(Δ(T) − 1).To study sharpness of the upper bound, consider the double-starSa,b, the tree whose two non-leaf vertices have degrees a and b. If a ≤ b, then RΔ(Sa,b; 2) is 2b − 2 when a < b and b is even; it is 2b − 1 otherwise. If s is fixed and at least 3, then RΔ(Sb,b;s) = f(s)(b − 1) − o(b), where f(s) = 2s − 3.5 − O(s−1).We prove several results about edge-colourings of bounded-degree graphs that are related to degree Ramsey numbers of paths. Finally, for cycles we show that RΔ(C2k + 1; s) ≥ 2s + 1, that RΔ(C2k; s) ≥ 2s, and that RΔ(C4;2) = 5. For the latter we prove the stronger statement that every graph with maximum degree at most 4 has a 2-edge-colouring such that the subgraph in each colour class has girth at least 5.


2014 ◽  
Vol 24 (4) ◽  
pp. 658-679 ◽  
Author(s):  
JÓZSEF BALOGH ◽  
PING HU ◽  
BERNARD LIDICKÝ ◽  
OLEG PIKHURKO ◽  
BALÁZS UDVARI ◽  
...  

We show that for every sufficiently largen, the number of monotone subsequences of length four in a permutation onnpoints is at least\begin{equation*} \binom{\lfloor{n/3}\rfloor}{4} + \binom{\lfloor{(n+1)/3}\rfloor}{4} + \binom{\lfloor{(n+2)/3}\rfloor}{4}. \end{equation*}Furthermore, we characterize all permutations on [n] that attain this lower bound. The proof uses the flag algebra framework together with some additional stability arguments. This problem is equivalent to some specific type of edge colourings of complete graphs with two colours, where the number of monochromaticK4is minimized. We show that all the extremal colourings must contain monochromaticK4only in one of the two colours. This translates back to permutations, where all the monotone subsequences of length four are all either increasing, or decreasing only.


2010 ◽  
Vol 27 (1) ◽  
pp. 121-128 ◽  
Author(s):  
Tao Jiang ◽  
Michael Salerno

2009 ◽  
Vol 18 (1-2) ◽  
pp. 247-258 ◽  
Author(s):  
PO-SHEN LOH ◽  
BENNY SUDAKOV

For two graphs S and T, the constrained Ramsey number f(S, T) is the minimum n such that every edge colouring of the complete graph on n vertices (with any number of colours) has a monochromatic subgraph isomorphic to S or a rainbow subgraph isomorphic to T. Here, a subgraph is said to be rainbow if all of its edges have different colours. It is an immediate consequence of the Erdős–Rado Canonical Ramsey Theorem that f(S, T) exists if and only if S is a star or T is acyclic. Much work has been done to determine the rate of growth of f(S, T) for various types of parameters. When S and T are both trees having s and t edges respectively, Jamison, Jiang and Ling showed that f(S, T) ≤ O(st2) and conjectured that it is always at most O(st). They also mentioned that one of the most interesting open special cases is when T is a path. In this paper, we study this case and show that f(S, Pt) = O(st log t), which differs only by a logarithmic factor from the conjecture. This substantially improves the previous bounds for most values of s and t.


2010 ◽  
Vol 31 (7) ◽  
pp. 1680-1688 ◽  
Author(s):  
L. Boza ◽  
M. Cera ◽  
P. García-Vázquez ◽  
M.P. Revuelta

2008 ◽  
Vol 17 (4) ◽  
pp. 471-486 ◽  
Author(s):  
PETER ALLEN

In 1998 Łuczak Rödl and Szemerédi [7] proved, by means of the Regularity Lemma, that there exists n0 such that, for any n ≥ n0 and two-edge-colouring of Kn, there exists a pair of vertex-disjoint monochromatic cycles of opposite colours covering the vertices of Kn. In this paper we make use of an alternative method of finding useful structure in a graph, leading to a proof of the same result with a much smaller value of n0. The proof gives a polynomial-time algorithm for finding the two cycles.


10.37236/257 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Veselin Jungić ◽  
Tomáš Kaiser ◽  
Daniel Král'

We study the mixed Ramsey number $maxR(n,{K_m},{K_r})$, defined as the maximum number of colours in an edge-colouring of the complete graph $K_n$, such that $K_n$ has no monochromatic complete subgraph on $m$ vertices and no rainbow complete subgraph on $r$ vertices. Improving an upper bound of Axenovich and Iverson, we show that $maxR(n,{K_m},{K_4}) \leq n^{3/2}\sqrt{2m}$ for all $m\geq 3$. Further, we discuss a possible way to improve their lower bound on $maxR(n,{K_4},{K_4})$ based on incidence graphs of finite projective planes.


10.37236/1103 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Catherine Greenhill ◽  
Andrzej Ruciński

A proper edge colouring of a graph is neighbour-distinguishing if for all pairs of adjacent vertices $v$, $w$ the set of colours appearing on the edges incident with $v$ is not equal to the set of colours appearing on the edges incident with $w$. Let ${\rm ndi}(G)$ be the least number of colours required for a proper neighbour-distinguishing edge colouring of $G$. We prove that for $d\geq 4$, a random $d$-regular graph $G$ on $n$ vertices asymptotically almost surely satisfies ${\rm ndi}(G)\leq \lceil 3d/2\rceil$. This verifies a conjecture of Zhang, Liu and Wang for almost all 4-regular graphs.


10.37236/239 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Xiaodong Xu ◽  
Stanisław P. Radziszowski

In this note we show how to extend Mathon's cyclotomic colorings of the edges of some complete graphs without increasing the maximum order of monochromatic complete subgraphs. This improves the well known lower bound construction for multicolor Ramsey numbers, in particular we obtain $R_3(7) \ge 3214$.


Sign in / Sign up

Export Citation Format

Share Document