Line-of-Sight Networks

2009 ◽  
Vol 18 (1-2) ◽  
pp. 145-163 ◽  
Author(s):  
ALAN FRIEZE ◽  
JON KLEINBERG ◽  
R. RAVI ◽  
WARREN DEBANY

Random geometric graphs have been one of the fundamental models for reasoning about wireless networks: one places n points at random in a region of the plane (typically a square or circle), and then connects pairs of points by an edge if they are within a fixed distance of one another. In addition to giving rise to a range of basic theoretical questions, this class of random graphs has been a central analytical tool in the wireless networking community.For many of the primary applications of wireless networks, however, the underlying environment has a large number of obstacles, and communication can only take place among nodes when they are close in space and when they have line-of-sight access to one another – consider, for example, urban settings or large indoor environments. In such domains, the standard model of random geometric graphs is not a good approximation of the true constraints, since it is not designed to capture the line-of-sight restrictions.Here we propose a random-graph model incorporating both range limitations and line-of-sight constraints, and we prove asymptotically tight results for k-connectivity. Specifically, we consider points placed randomly on a grid (or torus), such that each node can see up to a fixed distance along the row and column it belongs to. (We think of the rows and columns as ‘streets’ and ‘avenues’ among a regularly spaced array of obstructions.) Further, we show that when the probability of node placement is a constant factor larger than the threshold for connectivity, near-shortest paths between pairs of nodes can be found, with high probability, by an algorithm using only local information. In addition to analysing connectivity and k-connectivity, we also study the emergence of a giant component, as well an approximation question, in which we seek to connect a set of given nodes in such an environment by adding a small set of additional ‘relay’ nodes.

2000 ◽  
Vol 9 (6) ◽  
pp. 489-511 ◽  
Author(s):  
JOSEP DÍAZ ◽  
MATHEW D. PENROSE ◽  
JORDI PETIT ◽  
MARÍA SERNA

This work deals with convergence theorems and bounds on the cost of several layout measures for lattice graphs, random lattice graphs and sparse random geometric graphs. Specifically, we consider the following problems: Minimum Linear Arrangement, Cutwidth, Sum Cut, Vertex Separation, Edge Bisection and Vertex Bisection. For full square lattices, we give optimal layouts for the problems still open. For arbitrary lattice graphs, we present best possible bounds disregarding a constant factor. We apply percolation theory to the study of lattice graphs in a probabilistic setting. In particular, we deal with the subcritical regime that this class of graphs exhibits and characterize the behaviour of several layout measures in this space of probability. We extend the results on random lattice graphs to random geometric graphs, which are graphs whose nodes are spread at random in the unit square and whose edges connect pairs of points which are within a given distance. We also characterize the behaviour of several layout measures on random geometric graphs in their subcritical regime. Our main results are convergence theorems that can be viewed as an analogue of the Beardwood, Halton and Hammersley theorem for the Euclidean TSP on random points in the unit square.


Author(s):  
A.C.C. Coolen ◽  
A. Annibale ◽  
E.S. Roberts

This chapter presents network-generating models which cannot be neatly categorized as growing, nor as defined primarily through a target degree distribution. They are best understood as mechanistic constructions designed to elucidate a particular feature of the network. In the first sub-section, the Watts–Strogatz model is introduced and motivated as a construction to achieve both a high degree of clustering and a low average path length. Geometric graphs, in their Euclidian flavour, are shown to be a natural choice for broadcast networks. The Hyperbolic variant is informally described, because it is known to be a natural space in which to embed hierarchical graphs. Planar graphs have very specific real-world applications, but are extraordinarily challenging to analyze mathematically. Finally, weighted graphs allow for concepts such as traffic to be incorporated into the random graph model.


2016 ◽  
pp. 99-109 ◽  
Author(s):  
V. V. Shakhov ◽  
◽  
A. N. Yurgenson ◽  
O. D. Sokolova ◽  
◽  
...  

2009 ◽  
Vol 19 (02) ◽  
pp. 687-693 ◽  
Author(s):  
ALBERT DÍAZ-GUILERA ◽  
JESÚS GÓMEZ-GARDEÑES ◽  
YAMIR MORENO ◽  
MAZIAR NEKOVEE

In this paper, we study the synchronization properties of random geometric graphs. We show that the onset of synchronization takes place roughly at the same value of the order parameter as a random graph with the same size and average connectivity. However, the dependence of the order parameter on the coupling strength indicates that the fully synchronized state is more easily attained in random graphs. We next focus on the complete synchronized state and show that this state is less stable for random geometric graphs than for other kinds of complex networks. Finally, a rewiring mechanism is proposed as a way to improve the stability of the fully synchronized state as well as to lower the value of the coupling strength at which it is achieved. Our work has important implications for the synchronization of wireless networks, and should provide valuable insights for the development and deployment of more efficient and robust distributed synchronization protocols for these systems.


Author(s):  
Mark Newman

A discussion of the most fundamental of network models, the configuration model, which is a random graph model of a network with a specified degree sequence. Following a definition of the model a number of basic properties are derived, including the probability of an edge, the expected number of multiedges, the excess degree distribution, the friendship paradox, and the clustering coefficient. This is followed by derivations of some more advanced properties including the condition for the existence of a giant component, the size of the giant component, the average size of a small component, and the expected diameter. Generating function methods for network models are also introduced and used to perform some more advanced calculations, such as the calculation of the distribution of the number of second neighbors of a node and the complete distribution of sizes of small components. The chapter ends with a brief discussion of extensions of the configuration model to directed networks, bipartite networks, networks with degree correlations, networks with high clustering, and networks with community structure, among other possibilities.


Author(s):  
Mark Newman

An introduction to the mathematics of the Poisson random graph, the simplest model of a random network. The chapter starts with a definition of the model, followed by derivations of basic properties like the mean degree, degree distribution, and clustering coefficient. This is followed with a detailed derivation of the large-scale structural properties of random graphs, including the position of the phase transition at which a giant component appears, the size of the giant component, the average size of the small components, and the expected diameter of the network. The chapter ends with a discussion of some of the shortcomings of the random graph model.


Sign in / Sign up

Export Citation Format

Share Document