scholarly journals Embedding Spanning Bipartite Graphs of Small Bandwidth

2012 ◽  
Vol 22 (1) ◽  
pp. 71-96 ◽  
Author(s):  
FIACHRA KNOX ◽  
ANDREW TREGLOWN

Böttcher, Schacht and Taraz (Math. Ann., 2009) gave a condition on the minimum degree of a graph G on n vertices that ensures G contains every r-chromatic graph H on n vertices of bounded degree and of bandwidth o(n), thereby proving a conjecture of Bollobás and Komlós (Combin. Probab. Comput., 1999). We strengthen this result in the case when H is bipartite. Indeed, we give an essentially best-possible condition on the degree sequence of a graph G on n vertices that forces G to contain every bipartite graph H on n vertices of bounded degree and of bandwidth o(n). This also implies an Ore-type result. In fact, we prove a much stronger result where the condition on G is relaxed to a certain robust expansion property. Our result also confirms the bipartite case of a conjecture of Balogh, Kostochka and Treglown concerning the degree sequence of a graph which forces a perfect H-packing.

2019 ◽  
Vol 35 (6) ◽  
pp. 1541-1553
Author(s):  
Béla Csaba ◽  
Bálint Vásárhelyi

Abstract In this paper we construct a class of bounded degree bipartite graphs with a small separator and large bandwidth, thereby showing that separability and bandwidth are not linearly equivalent. Furthermore, we also prove that graphs from this class are spanning subgraphs of graphs with minimum degree just slightly above n / 2,  even though their bandwidth is large.


2014 ◽  
Vol Vol. 16 no. 3 ◽  
Author(s):  
Frederic Havet ◽  
Nagarajan Paramaguru ◽  
Rathinaswamy Sampathkumar

International audience For a connected graph G of order |V(G)| ≥3 and a k-labelling c : E(G) →{1,2,…,k} of the edges of G, the code of a vertex v of G is the ordered k-tuple (ℓ1,ℓ2,…,ℓk), where ℓi is the number of edges incident with v that are labelled i. The k-labelling c is detectable if every two adjacent vertices of G have distinct codes. The minimum positive integer k for which G has a detectable k-labelling is the detection number det(G) of G. In this paper, we show that it is NP-complete to decide if the detection number of a cubic graph is 2. We also show that the detection number of every bipartite graph of minimum degree at least 3 is at most 2. Finally, we give some sufficient condition for a cubic graph to have detection number 3.


1993 ◽  
Vol 2 (3) ◽  
pp. 263-269 ◽  
Author(s):  
G. Chen ◽  
R. H. Schelp

Let k be a positive integer, k ≥ 2. In this paper we study bipartite graphs G such that, for n sufficiently large, each two-coloring of the edges of the complete graph Kn gives a monochromatic copy of G, with some k of its vertices having the maximum degree of these k vertices minus the minimum degree of these k vertices (in the colored Kn) at most k − 2.


Filomat ◽  
2019 ◽  
Vol 33 (3) ◽  
pp. 993-1011
Author(s):  
Ming-Zhu Chen ◽  
Xiao-Dong Zhang

A balanced bipartite graph G is said to be 2p-Hamilton-biconnected if for any balanced subset W of size 2p of V(G), the subgraph induced by V(G)nW is Hamilton-biconnected. In this paper, we prove that ?Let G be a balanced bipartite graph of order 2n with minimum degree ?(G) ? k, where n ? 2k-p+2 for two integers k ? p ? 0. If the number of edges e(G) > n(n-k + p-1) + (k + 2)(k-p+1), then G is 2p-Hamilton-biconnected except some exceptions.? Furthermore, this result is used to present two new spectral conditions for a graph to be 2p-Hamilton-biconnected. Moreover, the similar results are also presented for nearly balanced bipartite graphs.


2018 ◽  
Vol 10 (2) ◽  
pp. 249-275
Author(s):  
Koko K. Kayibi ◽  
U. Samee ◽  
S. Pirzada ◽  
Mohammad Ali Khan

Abstract Let A = (a1, a2, ..., an) be a degree sequence of a simple bipartite graph. We present an algorithm that takes A as input, and outputs a simple bipartite realization of A, without stalling. The running time of the algorithm is ⊝(n1n2), where ni is the number of vertices in the part i of the bipartite graph. Then we couple the generation algorithm with a rejection sampling scheme to generate a simple realization of A uniformly at random. The best algorithm we know is the implicit one due to Bayati, Kim and Saberi (2010) that has a running time of O(mamax), where $m = {1 \over 2}\sum\nolimits_{i = 1}^n {{a_i}} and amax is the maximum of the degrees, but does not sample uniformly. Similarly, the algorithm presented by Chen et al. (2005) does not sample uniformly, but nearly uniformly. The realization of A output by our algorithm may be a start point for the edge-swapping Markov Chains pioneered by Brualdi (1980) and Kannan et al.(1999).


10.37236/1704 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Jill R. Faudree ◽  
Ronald J. Gould ◽  
Florian Pfender ◽  
Allison Wolf

In 1997, Ng and Schultz introduced the idea of cycle orderability. For a positive integer $k$, a graph $G$ is k-ordered if for every ordered sequence of $k$ vertices, there is a cycle that encounters the vertices of the sequence in the given order. If the cycle is also a hamiltonian cycle, then $G$ is said to be k-ordered hamiltonian. We give minimum degree conditions and sum of degree conditions for nonadjacent vertices that imply a balanced bipartite graph to be $k$-ordered hamiltonian. For example, let $G$ be a balanced bipartite graph on $2n$ vertices, $n$ sufficiently large. We show that for any positive integer $k$, if the minimum degree of $G$ is at least $(2n+k-1)/4$, then $G$ is $k$-ordered hamiltonian.


10.37236/9489 ◽  
2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Peter Bradshaw

A bipartite graph is called bipancyclic if it contains cycles of every even length from four up to the number of vertices in the graph. A theorem of Schmeichel and Mitchem states that for $n \geqslant 4$, every balanced bipartite graph on $2n$ vertices in which each vertex in one color class has degree greater than $\frac{n}{2}$ and each vertex in the other color class has degree at least $\frac{n}{2}$ is bipancyclic. We prove a generalization of this theorem in the setting of graph transversals. Namely, we show that given a family $\mathcal{G}$ of $2n$ bipartite graphs on a common set $X$ of $2n$ vertices with a common balanced bipartition, if each graph of $\mathcal G$ has minimum degree greater than $\frac{n}{2}$ in one color class and minimum degree at least $\frac{n}{2}$ in the other color class, then there exists a cycle on $X$ of each even length $4 \leqslant \ell \leqslant 2n$ that uses at most one edge from each graph of $\mathcal G$. We also show that given a family $\mathcal G$ of $n$ bipartite graphs on a common set $X$ of $2n$ vertices meeting the same degree conditions, there exists a perfect matching on $X$ that uses exactly one edge from each graph of $\mathcal G$.


10.37236/3444 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Nicholas Cavenagh

Let $G$ be an even bipartite graph with partite sets $X$ and $Y$ such that $|Y|$ is even and the minimum degree of a vertex in $Y$ is at least $95|X|/96$. Suppose furthermore that the number of edges in $G$ is divisible by $4$. Then $G$ decomposes into 4-cycles.


10.37236/3628 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Mikio Kano ◽  
Kenta Ozeki ◽  
Kazuhiro Suzuki ◽  
Masao Tsugaki ◽  
Tomoki Yamashita

A tree is called a $k$-tree if its maximum degree is at most $k$. We prove the following theorem. Let $k \geq 2$ be an integer, and $G$ be a connected bipartite graph with bipartition $(A,B)$ such that $|A| \le |B| \le (k-1)|A|+1$. If $\sigma_k(G) \ge |B|$, then $G$ has a spanning $k$-tree, where $\sigma_k(G)$ denotes the minimum degree sum of $k$ independent vertices of $G$. Moreover, the condition on $\sigma_k(G)$ is sharp. It was shown by Win (Abh. Math. Sem. Univ. Hamburg, 43, 263–267, 1975) that if a connected graph $H$ satisfies $\sigma_k(H) \ge |H|-1$, then $H$ has a spanning $k$-tree. Thus our theorem shows that the condition becomes much weaker if the graph is bipartite.


2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Grant Cairns ◽  
Stacey Mendan

Graph Theory International audience We show that if the two parts of a finite bipartite graph have the same degree sequence, then there is a bipartite graph, with the same degree sequences, which is symmetric, in that it has an involutive graph automorphism that interchanges its two parts. To prove this, we study the relationship between symmetric bipartite graphs and graphs with loops.


Sign in / Sign up

Export Citation Format

Share Document