scholarly journals Detection number of bipartite graphs and cubic graphs

2014 ◽  
Vol Vol. 16 no. 3 ◽  
Author(s):  
Frederic Havet ◽  
Nagarajan Paramaguru ◽  
Rathinaswamy Sampathkumar

International audience For a connected graph G of order |V(G)| ≥3 and a k-labelling c : E(G) →{1,2,…,k} of the edges of G, the code of a vertex v of G is the ordered k-tuple (ℓ1,ℓ2,…,ℓk), where ℓi is the number of edges incident with v that are labelled i. The k-labelling c is detectable if every two adjacent vertices of G have distinct codes. The minimum positive integer k for which G has a detectable k-labelling is the detection number det(G) of G. In this paper, we show that it is NP-complete to decide if the detection number of a cubic graph is 2. We also show that the detection number of every bipartite graph of minimum degree at least 3 is at most 2. Finally, we give some sufficient condition for a cubic graph to have detection number 3.

10.37236/1704 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Jill R. Faudree ◽  
Ronald J. Gould ◽  
Florian Pfender ◽  
Allison Wolf

In 1997, Ng and Schultz introduced the idea of cycle orderability. For a positive integer $k$, a graph $G$ is k-ordered if for every ordered sequence of $k$ vertices, there is a cycle that encounters the vertices of the sequence in the given order. If the cycle is also a hamiltonian cycle, then $G$ is said to be k-ordered hamiltonian. We give minimum degree conditions and sum of degree conditions for nonadjacent vertices that imply a balanced bipartite graph to be $k$-ordered hamiltonian. For example, let $G$ be a balanced bipartite graph on $2n$ vertices, $n$ sufficiently large. We show that for any positive integer $k$, if the minimum degree of $G$ is at least $(2n+k-1)/4$, then $G$ is $k$-ordered hamiltonian.


10.37236/3628 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Mikio Kano ◽  
Kenta Ozeki ◽  
Kazuhiro Suzuki ◽  
Masao Tsugaki ◽  
Tomoki Yamashita

A tree is called a $k$-tree if its maximum degree is at most $k$. We prove the following theorem. Let $k \geq 2$ be an integer, and $G$ be a connected bipartite graph with bipartition $(A,B)$ such that $|A| \le |B| \le (k-1)|A|+1$. If $\sigma_k(G) \ge |B|$, then $G$ has a spanning $k$-tree, where $\sigma_k(G)$ denotes the minimum degree sum of $k$ independent vertices of $G$. Moreover, the condition on $\sigma_k(G)$ is sharp. It was shown by Win (Abh. Math. Sem. Univ. Hamburg, 43, 263–267, 1975) that if a connected graph $H$ satisfies $\sigma_k(H) \ge |H|-1$, then $H$ has a spanning $k$-tree. Thus our theorem shows that the condition becomes much weaker if the graph is bipartite.


2013 ◽  
Vol Vol. 15 no. 2 (Graph Theory) ◽  
Author(s):  
Sunil Chandran ◽  
Rogers Mathew

Graph Theory International audience Let k be an integer and k ≥3. A graph G is k-chordal if G does not have an induced cycle of length greater than k. From the definition it is clear that 3-chordal graphs are precisely the class of chordal graphs. Duchet proved that, for every positive integer m, if Gm is chordal then so is Gm+2. Brandstädt et al. in [Andreas Brandstädt, Van Bang Le, and Thomas Szymczak. Duchet-type theorems for powers of HHD-free graphs. Discrete Mathematics, 177(1-3):9-16, 1997.] showed that if Gm is k-chordal, then so is Gm+2. Powering a bipartite graph does not preserve its bipartitedness. In order to preserve the bipartitedness of a bipartite graph while powering Chandran et al. introduced the notion of bipartite powering. This notion was introduced to aid their study of boxicity of chordal bipartite graphs. The m-th bipartite power G[m] of a bipartite graph G is the bipartite graph obtained from G by adding edges (u,v) where dG(u,v) is odd and less than or equal to m. Note that G[m] = G[m+1] for each odd m. In this paper we show that, given a bipartite graph G, if G is k-chordal then so is G[m], where k, m are positive integers with k≥4.


2020 ◽  
Vol 18 (1) ◽  
pp. 873-885
Author(s):  
Gülnaz Boruzanlı Ekinci ◽  
Csilla Bujtás

Abstract Let k be a positive integer and let G be a graph with vertex set V(G) . A subset D\subseteq V(G) is a k -dominating set if every vertex outside D is adjacent to at least k vertices in D . The k -domination number {\gamma }_{k}(G) is the minimum cardinality of a k -dominating set in G . For any graph G , we know that {\gamma }_{k}(G)\ge \gamma (G)+k-2 where \text{Δ}(G)\ge k\ge 2 and this bound is sharp for every k\ge 2 . In this paper, we characterize bipartite graphs satisfying the equality for k\ge 3 and present a necessary and sufficient condition for a bipartite graph to satisfy the equality hereditarily when k=3 . We also prove that the problem of deciding whether a graph satisfies the given equality is NP-hard in general.


2010 ◽  
Vol Vol. 12 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Mieczyslaw Borowiecki ◽  
Anna Fiedorowicz ◽  
Katarzyna Jesse-Jozefczyk ◽  
Elzbieta Sidorowicz

Graphs and Algorithms International audience A k-colouring of a graph G is called acyclic if for every two distinct colours i and j, the subgraph induced in G by all the edges linking a vertex coloured with i and a vertex coloured with j is acyclic. In other words, there are no bichromatic alternating cycles. In 1999 Boiron et al. conjectured that a graph G with maximum degree at most 3 has an acyclic 2-colouring such that the set of vertices in each colour induces a subgraph with maximum degree at most 2. In this paper we prove this conjecture and show that such a colouring of a cubic graph can be determined in polynomial time. We also prove that it is an NP-complete problem to decide if a graph with maximum degree 4 has the above mentioned colouring.


2013 ◽  
Vol Vol. 15 no. 1 (Graph Theory) ◽  
Author(s):  
Ben Seamone ◽  
Brett Stevens

Graph Theory International audience Karonski, Luczak, and Thomason (2004) conjecture that, for any connected graph G on at least three vertices, there exists an edge weighting from 1, 2, 3 such that adjacent vertices receive different sums of incident edge weights. Bartnicki, Grytczuk, and Niwcyk (2009) make a stronger conjecture, that each edge's weight may be chosen from an arbitrary list of size 3 rather than 1, 2, 3. We examine a variation of these conjectures, where each vertex is coloured with a sequence of edge weights. Such a colouring relies on an ordering of E(G), and so two variations arise - one where we may choose any ordering of E(G) and one where the ordering is fixed. In the former case, we bound the list size required for any graph. In the latter, we obtain a bound on list sizes for graphs with sufficiently large minimum degree. We also extend our methods to a list variation of irregularity strength, where each vertex receives a distinct sequence of edge weights.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Daniela Kühn ◽  
Deryk Osthus

International audience It is well known that every bipartite graph with vertex classes of size $n$ whose minimum degree is at least $n/2$ contains a perfect matching. We prove an analogue of this result for uniform hypergraphs. We also provide an analogue of Dirac's theorem on Hamilton cycles for $3$-uniform hypergraphs: We say that a $3$-uniform hypergraph has a Hamilton cycle if there is a cyclic ordering of its vertices such that every pair of consecutive vertices lies in a hyperedge which consists of three consecutive vertices. We prove that for every $\varepsilon > 0$ there is an $n_0$ such that every $3$-uniform hypergraph of order $n \geq n_0$ whose minimum degree is at least $n/4+ \varepsilon n$ contains a Hamilton cycle. Our bounds on the minimum degree are essentially best possible.


2009 ◽  
Vol Vol. 11 no. 2 (Graph and Algorithms) ◽  
Author(s):  
Janusz Adamus ◽  
Lech Adamus

Graphs and Algorithms International audience We conjecture Ore and Erdős type criteria for a balanced bipartite graph of order 2n to contain a long cycle C(2n-2k), where 0 <= k < n/2. For k = 0, these are the classical hamiltonicity criteria of Moon and Moser. The main two results of the paper assert that our conjectures hold for k = 1 as well.


2021 ◽  
pp. 2150014
Author(s):  
Shuai Kou ◽  
Chengfu Qin ◽  
Weihua Yang

An edge [Formula: see text] in a 3-connected graph [Formula: see text] is contractible if the contraction [Formula: see text] is still [Formula: see text]-connected. Let [Formula: see text] be the set of contractible edges of [Formula: see text], [Formula: see text] be the set of vertices adjacent to three vertices of a triangle △. It has been proved that [Formula: see text] in a 3-connected graph [Formula: see text] of order at least 5. In this note [Formula: see text] is a 3-connected cubic graph containing [Formula: see text] triangles, at least [Formula: see text] vertices and with every [Formula: see text] an independent set. Then [Formula: see text]. This is a bound better than [Formula: see text] under some conditions.


2015 ◽  
Vol 58 (2) ◽  
pp. 320-333
Author(s):  
Aurora Llamas ◽  
Josá Martínez–Bernal

AbstractThe cover product of disjoint graphs G and H with fixed vertex covers C(G) and C(H), is the graphwith vertex set V(G) ∪ V(H) and edge setWe describe the graded Betti numbers of GeH in terms of those of. As applications we obtain: (i) For any positive integer k there exists a connected bipartite graph G such that reg R/I(G) = μS(G) + k, where, I(G) denotes the edge ideal of G, reg R/I(G) is the Castelnuovo–Mumford regularity of R/I(G) and μS(G) is the induced or strong matching number of G; (ii)The graded Betti numbers of the complement of a tree depends only upon its number of vertices; (iii)The h-vector of R/I(G e H) is described in terms of the h-vectors of R/I(G) and R/I(H). Furthermore, in a diòerent direction, we give a recursive formula for the graded Betti numbers of chordal bipartite graphs.


Sign in / Sign up

Export Citation Format

Share Document