scholarly journals Symmetric bipartite graphs and graphs with loops

2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Grant Cairns ◽  
Stacey Mendan

Graph Theory International audience We show that if the two parts of a finite bipartite graph have the same degree sequence, then there is a bipartite graph, with the same degree sequences, which is symmetric, in that it has an involutive graph automorphism that interchanges its two parts. To prove this, we study the relationship between symmetric bipartite graphs and graphs with loops.

2013 ◽  
Vol Vol. 15 no. 2 (Graph Theory) ◽  
Author(s):  
Sunil Chandran ◽  
Rogers Mathew

Graph Theory International audience Let k be an integer and k ≥3. A graph G is k-chordal if G does not have an induced cycle of length greater than k. From the definition it is clear that 3-chordal graphs are precisely the class of chordal graphs. Duchet proved that, for every positive integer m, if Gm is chordal then so is Gm+2. Brandstädt et al. in [Andreas Brandstädt, Van Bang Le, and Thomas Szymczak. Duchet-type theorems for powers of HHD-free graphs. Discrete Mathematics, 177(1-3):9-16, 1997.] showed that if Gm is k-chordal, then so is Gm+2. Powering a bipartite graph does not preserve its bipartitedness. In order to preserve the bipartitedness of a bipartite graph while powering Chandran et al. introduced the notion of bipartite powering. This notion was introduced to aid their study of boxicity of chordal bipartite graphs. The m-th bipartite power G[m] of a bipartite graph G is the bipartite graph obtained from G by adding edges (u,v) where dG(u,v) is odd and less than or equal to m. Note that G[m] = G[m+1] for each odd m. In this paper we show that, given a bipartite graph G, if G is k-chordal then so is G[m], where k, m are positive integers with k≥4.


10.37236/705 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Carl Johan Casselgren

A proper edge coloring of a graph $G$ with colors $1,2,3,\dots$ is called an interval coloring if the colors on the edges incident with any vertex are consecutive. A bipartite graph is $(3,4)$-biregular if all vertices in one part have degree $3$ and all vertices in the other part have degree $4$. Recently it was proved [J. Graph Theory 61 (2009), 88-97] that if such a graph $G$ has a spanning subgraph whose components are paths with endpoints at 3-valent vertices and lengths in $\{2, 4, 6, 8\}$, then $G$ has an interval coloring. It was also conjectured that every simple $(3,4)$-biregular bipartite graph has such a subgraph. We provide some evidence for this conjecture by proving that a simple $(3,4)$-biregular bipartite graph has a spanning subgraph whose components are nontrivial paths with endpoints at $3$-valent vertices and lengths not exceeding $22$.


2014 ◽  
Vol Vol. 16 no. 1 (Graph Theory) ◽  
Author(s):  
Jiyun Guo ◽  
Jianhua Yin

Graph Theory International audience Let (a1,a2,\textellipsis,an) and (b1,b2,\textellipsis,bn) be two sequences of nonnegative integers satisfying the condition that b1>=b2>=...>=bn, ai<= bi for i=1,2,\textellipsis,n and ai+bi>=ai+1+bi+1 for i=1,2,\textellipsis, n-1. In this paper, we give two different conditions, one of which is sufficient and the other one necessary, for the sequences (a1,a2,\textellipsis,an) and (b1,b2,\textellipsis,bn) such that for every (c1,c2,\textellipsis,cn) with ai<=ci<=bi for i=1,2,\textellipsis,n and &#x2211;&limits;i=1n ci=0 (mod 2), there exists a simple graph G with vertices v1,v2,\textellipsis,vn such that dG(vi)=ci for i=1,2,\textellipsis,n. This is a variant of Niessen\textquoterights problem on degree sequences of graphs (Discrete Math., 191 (1998), 247&#x2013;253).


2014 ◽  
Vol Vol. 16 no. 3 ◽  
Author(s):  
Frederic Havet ◽  
Nagarajan Paramaguru ◽  
Rathinaswamy Sampathkumar

International audience For a connected graph G of order |V(G)| ≥3 and a k-labelling c : E(G) →{1,2,…,k} of the edges of G, the code of a vertex v of G is the ordered k-tuple (ℓ1,ℓ2,…,ℓk), where ℓi is the number of edges incident with v that are labelled i. The k-labelling c is detectable if every two adjacent vertices of G have distinct codes. The minimum positive integer k for which G has a detectable k-labelling is the detection number det(G) of G. In this paper, we show that it is NP-complete to decide if the detection number of a cubic graph is 2. We also show that the detection number of every bipartite graph of minimum degree at least 3 is at most 2. Finally, we give some sufficient condition for a cubic graph to have detection number 3.


2009 ◽  
Vol Vol. 11 no. 2 (Graph and Algorithms) ◽  
Author(s):  
Janusz Adamus ◽  
Lech Adamus

Graphs and Algorithms International audience We conjecture Ore and Erdős type criteria for a balanced bipartite graph of order 2n to contain a long cycle C(2n-2k), where 0 <= k < n/2. For k = 0, these are the classical hamiltonicity criteria of Moon and Moser. The main two results of the paper assert that our conjectures hold for k = 1 as well.


2013 ◽  
Vol Vol. 15 no. 2 (Graph Theory) ◽  
Author(s):  
Shuchao Li ◽  
Huihui Zhang ◽  
Xiaoyan Zhang

Graph Theory International audience A maximal independent set is an independent set that is not a proper subset of any other independent set. Liu [J.Q. Liu, Maximal independent sets of bipartite graphs, J. Graph Theory, 17 (4) (1993) 495-507] determined the largest number of maximal independent sets among all n-vertex bipartite graphs. The corresponding extremal graphs are forests. It is natural and interesting for us to consider this problem on bipartite graphs with cycles. Let \mathscrBₙ (resp. \mathscrBₙ') be the set of all n-vertex bipartite graphs with at least one cycle for even (resp. odd) n. In this paper, the largest number of maximal independent sets of graphs in \mathscrBₙ (resp. \mathscrBₙ') is considered. Among \mathscrBₙ the disconnected graphs with the first-, second-, \ldots, \fracn-22-th largest number of maximal independent sets are characterized, while the connected graphs in \mathscrBₙ having the largest, the second largest number of maximal independent sets are determined. Among \mathscrBₙ' graphs have the largest number of maximal independent sets are identified.


2012 ◽  
Vol 22 (1) ◽  
pp. 71-96 ◽  
Author(s):  
FIACHRA KNOX ◽  
ANDREW TREGLOWN

Böttcher, Schacht and Taraz (Math. Ann., 2009) gave a condition on the minimum degree of a graph G on n vertices that ensures G contains every r-chromatic graph H on n vertices of bounded degree and of bandwidth o(n), thereby proving a conjecture of Bollobás and Komlós (Combin. Probab. Comput., 1999). We strengthen this result in the case when H is bipartite. Indeed, we give an essentially best-possible condition on the degree sequence of a graph G on n vertices that forces G to contain every bipartite graph H on n vertices of bounded degree and of bandwidth o(n). This also implies an Ore-type result. In fact, we prove a much stronger result where the condition on G is relaxed to a certain robust expansion property. Our result also confirms the bipartite case of a conjecture of Balogh, Kostochka and Treglown concerning the degree sequence of a graph which forces a perfect H-packing.


Author(s):  
Brian Cloteaux

For a degree sequence, we define the set of edges that appear in every labeled realization of that sequence as forced, while the edges that appear in none are define as forbidden. We examine the structure of graphs in which the degree sequences contain either forced or forbidden edges. The results include the determination of the structure of the forced or forbidden edge sets, the relationship between the sizes of forced and forbidden sets for a sequence, and the structural consequences to their realizations. This includes showing that the diameter of every realization of a degree sequence containing forced or forbidden edges is no greater than 3, and that these graphs are maximally edge-connected.


2013 ◽  
Vol Vol. 15 no. 2 (Graph Theory) ◽  
Author(s):  
Xiumei Wang ◽  
Cheng He ◽  
Yixun Lin

Graph Theory International audience For a brick apart from a few small graphs, Lovász (1987) proposed a conjecture on the existence of an edge whose deletion results in a graph with only one brick in its tight cut decomposition. Carvalho, Lucchesi, and Murty (2002) confirmed this conjecture by showing the existence of such two edges. This paper generalizes the result obtained by Carvalho et al. to the case of irreducible near-brick, where a graph is irreducible if it contains no induced odd path of length 3 or more. Meanwhile, a lower bound on the number of removable edges of matching-covered bipartite graphs is presented.


2018 ◽  
Vol 10 (2) ◽  
pp. 249-275
Author(s):  
Koko K. Kayibi ◽  
U. Samee ◽  
S. Pirzada ◽  
Mohammad Ali Khan

Abstract Let A = (a1, a2, ..., an) be a degree sequence of a simple bipartite graph. We present an algorithm that takes A as input, and outputs a simple bipartite realization of A, without stalling. The running time of the algorithm is ⊝(n1n2), where ni is the number of vertices in the part i of the bipartite graph. Then we couple the generation algorithm with a rejection sampling scheme to generate a simple realization of A uniformly at random. The best algorithm we know is the implicit one due to Bayati, Kim and Saberi (2010) that has a running time of O(mamax), where $m = {1 \over 2}\sum\nolimits_{i = 1}^n {{a_i}} and amax is the maximum of the degrees, but does not sample uniformly. Similarly, the algorithm presented by Chen et al. (2005) does not sample uniformly, but nearly uniformly. The realization of A output by our algorithm may be a start point for the edge-swapping Markov Chains pioneered by Brualdi (1980) and Kannan et al.(1999).


Sign in / Sign up

Export Citation Format

Share Document