scholarly journals Exact Minimum Codegree Threshold for K−4-Factors

2017 ◽  
Vol 26 (6) ◽  
pp. 856-885 ◽  
Author(s):  
JIE HAN ◽  
ALLAN LO ◽  
ANDREW TREGLOWN ◽  
YI ZHAO

Given hypergraphs F and H, an F-factor in H is a set of vertex-disjoint copies of F which cover all the vertices in H. Let K−4 denote the 3-uniform hypergraph with four vertices and three edges. We show that for sufficiently large n ∈ 4ℕ, every 3-uniform hypergraph H on n vertices with minimum codegree at least n/2−1 contains a K−4-factor. Our bound on the minimum codegree here is best possible. It resolves a conjecture of Lo and Markström [15] for large hypergraphs, who earlier proved an asymptotically exact version of this result. Our proof makes use of the absorbing method as well as a result of Keevash and Mycroft [11] concerning almost perfect matchings in hypergraphs.

2015 ◽  
Vol 24 (6) ◽  
pp. 873-928 ◽  
Author(s):  
ANDREW TREGLOWN

We say that a (di)graph G has a perfect H-packing if there exists a set of vertex-disjoint copies of H which cover all the vertices in G. The seminal Hajnal–Szemerédi theorem characterizes the minimum degree that ensures a graph G contains a perfect Kr-packing. In this paper we prove the following analogue for directed graphs: Suppose that T is a tournament on r vertices and G is a digraph of sufficiently large order n where r divides n. If G has minimum in- and outdegree at least (1−1/r)n then G contains a perfect T-packing.In the case when T is a cyclic triangle, this result verifies a recent conjecture of Czygrinow, Kierstead and Molla [4] (for large digraphs). Furthermore, in the case when T is transitive we conjecture that it suffices for every vertex in G to have sufficiently large indegree or outdegree. We prove this conjecture for transitive triangles and asymptotically for all r ⩾ 3. Our approach makes use of a result of Keevash and Mycroft [10] concerning almost perfect matchings in hypergraphs as well as the Directed Graph Removal Lemma [1, 6].


Author(s):  
Jie Han ◽  
Allan Lo ◽  
Nicolás Sanhueza-Matamala

Abstract A k-uniform tight cycle $C_s^k$ is a hypergraph on s > k vertices with a cyclic ordering such that every k consecutive vertices under this ordering form an edge. The pair (k, s) is admissible if gcd (k, s) = 1 or k / gcd (k,s) is even. We prove that if $s \ge 2{k^2}$ and H is a k-uniform hypergraph with minimum codegree at least (1/2 + o(1))|V(H)|, then every vertex is covered by a copy of $C_s^k$ . The bound is asymptotically sharp if (k, s) is admissible. Our main tool allows us to arbitrarily rearrange the order in which a tight path wraps around a complete k-partite k-uniform hypergraph, which may be of independent interest. For hypergraphs F and H, a perfect F-tiling in H is a spanning collection of vertex-disjoint copies of F. For $k \ge 3$ , there are currently only a handful of known F-tiling results when F is k-uniform but not k-partite. If s ≢ 0 mod k, then $C_s^k$ is not k-partite. Here we prove an F-tiling result for a family of non-k-partite k-uniform hypergraphs F. Namely, for $s \ge 5{k^2}$ , every k-uniform hypergraph H with minimum codegree at least (1/2 + 1/(2s) + o(1))|V(H)| has a perfect $C_s^k$ -tiling. Moreover, the bound is asymptotically sharp if k is even and (k, s) is admissible.


2014 ◽  
Vol 24 (5) ◽  
pp. 723-732 ◽  
Author(s):  
JIE HAN

LetHbe ak-uniform hypergraph onnvertices wherenis a sufficiently large integer not divisible byk. We prove that if the minimum (k− 1)-degree ofHis at least ⌊n/k⌋, thenHcontains a matching with ⌊n/k⌋ edges. This confirms a conjecture of Rödl, Ruciński and Szemerédi [13], who proved that minimum (k− 1)-degreen/k+O(logn) suffices. More generally, we show thatHcontains a matching of sizedif its minimum codegree isd<n/k, which is also best possible.


10.37236/8167 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Asaf Ferber ◽  
Lior Hirschfeld

In this paper we prove an optimal co-degrees resilience property for the binomial $k$-uniform hypergraph model $H_{n,p}^k$ with respect to perfect matchings. That is, for a sufficiently large $n$ which is divisible by $k$, and $p\geq C_k\log {n}/n$, we prove that with high probability every subgraph $H\subseteq H^k_{n,p}$ with minimum co-degree (meaning, the number of supersets every set of size $k-1$ is contained in) at least $(1/2+o(1))np$ contains a perfect matching.


10.37236/2338 ◽  
2012 ◽  
Vol 19 (2) ◽  
Author(s):  
Andrzej Czygrinow ◽  
Vikram Kamat

We will give a tight minimum co-degree condition for a 4-uniform hypergraph to contain a perfect matching.


10.37236/7658 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Yi Zhang ◽  
Yi Zhao ◽  
Mei Lu

We determine the minimum degree sum of two adjacent vertices that ensures a perfect matching in a 3-uniform hypergraph without an isolated vertex. Suppose that $H$ is a 3-uniform hypergraph whose order $n$ is sufficiently large and divisible by $3$. If $H$ contains no isolated vertex and $\deg(u)+\deg(v) > \frac{2}{3}n^2-\frac{8}{3}n+2$ for any two vertices $u$ and $v$ that are contained in some edge of $H$, then $H$ contains a perfect matching. This bound is tight and the (unique) extremal hyergraph is a different space barrier from the one for the corresponding Dirac problem.


2017 ◽  
Vol 26 (4) ◽  
pp. 536-559 ◽  
Author(s):  
WEI GAO ◽  
JIE HAN

LetC63be the 3-uniform hypergraph on {1, . . ., 6} with edges 123,345,561, which can be seen as the analogue of the triangle in 3-uniform hypergraphs. For sufficiently largendivisible by 6, we show that everyn-vertex 3-uniform hypergraphHwith minimum codegree at leastn/3 contains aC63-factor, that is, a spanning subhypergraph consisting of vertex-disjoint copies ofC63. The minimum codegree condition is best possible. This improves the asymptotic result obtained by Mycroft and answers a question of Rödl and Ruciński exactly.


2019 ◽  
Vol 53 (5) ◽  
pp. 1763-1773
Author(s):  
Meziane Aider ◽  
Lamia Aoudia ◽  
Mourad Baïou ◽  
A. Ridha Mahjoub ◽  
Viet Hung Nguyen

Let G = (V, E) be an undirected graph where the edges in E have non-negative weights. A star in G is either a single node of G or a subgraph of G where all the edges share one common end-node. A star forest is a collection of vertex-disjoint stars in G. The weight of a star forest is the sum of the weights of its edges. This paper deals with the problem of finding a Maximum Weight Spanning Star Forest (MWSFP) in G. This problem is NP-hard but can be solved in polynomial time when G is a cactus [Nguyen, Discrete Math. Algorithms App. 7 (2015) 1550018]. In this paper, we present a polyhedral investigation of the MWSFP. More precisely, we study the facial structure of the star forest polytope, denoted by SFP(G), which is the convex hull of the incidence vectors of the star forests of G. First, we prove several basic properties of SFP(G) and propose an integer programming formulation for MWSFP. Then, we give a class of facet-defining inequalities, called M-tree inequalities, for SFP(G). We show that for the case when G is a tree, the M-tree and the nonnegativity inequalities give a complete characterization of SFP(G). Finally, based on the description of the dominating set polytope on cycles given by Bouchakour et al. [Eur. J. Combin. 29 (2008) 652–661], we give a complete linear description of SFP(G) when G is a cycle.


Author(s):  
Vera Traub ◽  
Thorben Tröbst

AbstractWe consider the capacitated cycle covering problem: given an undirected, complete graph G with metric edge lengths and demands on the vertices, we want to cover the vertices with vertex-disjoint cycles, each serving a demand of at most one. The objective is to minimize a linear combination of the total length and the number of cycles. This problem is closely related to the capacitated vehicle routing problem (CVRP) and other cycle cover problems such as min-max cycle cover and bounded cycle cover. We show that a greedy algorithm followed by a post-processing step yields a $$(2 + \frac{2}{7})$$ ( 2 + 2 7 ) -approximation for this problem by comparing the solution to a polymatroid relaxation. We also show that the analysis of our algorithm is tight and provide a $$2 + \epsilon $$ 2 + ϵ lower bound for the relaxation.


Author(s):  
Vytautas Gruslys ◽  
Shoham Letzter

Abstract Magnant and Martin conjectured that the vertex set of any d-regular graph G on n vertices can be partitioned into $n / (d+1)$ paths (there exists a simple construction showing that this bound would be best possible). We prove this conjecture when $d = \Omega(n)$ , improving a result of Han, who showed that in this range almost all vertices of G can be covered by $n / (d+1) + 1$ vertex-disjoint paths. In fact our proof gives a partition of V(G) into cycles. We also show that, if $d = \Omega(n)$ and G is bipartite, then V(G) can be partitioned into n/(2d) paths (this bound is tight for bipartite graphs).


Sign in / Sign up

Export Citation Format

Share Document