Establishment of rat embryonic stem-like cells from the morula using a combination of feeder layers

Zygote ◽  
2009 ◽  
Vol 17 (3) ◽  
pp. 229-237 ◽  
Author(s):  
Chiaki Sano ◽  
Asako Matsumoto ◽  
Eimei Sato ◽  
Emiko Fukui ◽  
Midori Yoshizawa ◽  
...  

SummaryEmbryonic stem (ES) cells are characterized by pluripotency, in particular the ability to form a germline on injection into blastocysts. Despite numerous attempts, ES cell lines derived from rat embryos have not yet been established. The reason for this is unclear, although certain intrinsic biological differences among species and/or strains have been reported. Herein, using Wistar-Imamichi rats, specific characteristics of preimplantation embryos are described. At the blastocyst stage, Oct4 (also called Pou5f1) was expressed in both the inner cell mass (ICM) and the trophectoderm (TE), whereas expression of Cdx2 was localized to the TE. In contrast, at an earlier stage, expression of Oct4 was detected in all the nuclei in the morula. These stages were examined using a combination of feeder layers (rat embryonic fibroblast [REF] for primary outgrowth and SIM mouse embryo-derived thioguanine- and ouabain-resistant [STO] cells for passaging) to establish rat ES-like cell lines. The rat ES-like cell lines obtained from the morula maintained expression of Oct4 over long-term culture, whereas cell lines derived from blastocysts lost pluripotency during early passage. The morula-derived ES-like cell lines showed Oct4 expression in a long-term culture, even after cryogenic preservation, thawing and EGFP transfection. These results indicate that rat ES-like cell lines with long-term Oct4 expression can be established from the morula of Wistar-Imamichi rats using a combination of feeder layers.

2007 ◽  
Vol 19 (1) ◽  
pp. 230 ◽  
Author(s):  
Y.-W. Ou ◽  
K.-H. Lee ◽  
L.-R. Chen ◽  
P.-C. Tang ◽  
H.-F. Guu ◽  
...  

Embryonic stem (ES) cells are pluripotent cells from the inner cell mass (ICM) of the blastocyst. They are capable of differentiating to various cell types, such as neural cells, cardiocytes, hepatic cells, and germ cells. The aim of this study was to establish rabbit ES cell lines as an animal model for human diseases. Blastocysts were collected from New Zealand White rabbits during Days 4 to 5 after breeding. After removal of the mucin coat and the zona pellucida by pronase, the embryos were directly cultured in ES cell medium on mitomycin C-treated mouse embryonic fibroblast (MEF) or STO feeder layers. In Experiment 1, the efficiencies of 2 different feeder layers, MEF and STO, in generating rabbit ES cell lines were compared. Six blastocysts were used for each STO and MEF feeder group. The primary ICM colonies were formed in 67% (4/6) of the cultures on the STO and 83% (5/6) on the MEF. Sixty percent of those primary colonies (3/5) were successfully grown into ES-like cell lines in the MEF feeder group. However, no cell lines were established on the STO feeder. In Experiment 2, whole blastocysts or ICMs isolated by immunosurgery were cultured to establish ES cell lines. A total of 21 blastocysts were recovered from 2 does. Eighteen whole blastocysts and 3 isolated ICMs were cultured on the MEF feeders. Twelve (67%) of the cultured whole blastocysts formed primary ICM colonies, of which 5 (42%) of the cultures continuously propagated and formed ES-like cell lines. In the immunosurgical group, 2 of the 3 isolated ICMs formed primary colonies but only 1 ES-like cell line was established. A total of 9 ES-like cell lines maintained morphological undifferentiation after 14 passages and expressed alkaline phosphatase activity. Seven of the 9 ES-like cells expressed Oct-4 and the stage-specific embryonic antigen-4 (SSEA-4) as detected by immunocytochemical staining. Two cell lines were further induced to differentiate into embryoid bodies in suspension culture. Another 3 cell lines were injected into SCID mice and one of them formed a teratoma. The competence of generating chimeric rabbits and the teratogenicity of the established ES-like cell lines are under evaluation. In conclusion, rabbit ES-like cells were efficiently generated and whole-blastocyst culturing on the MEF feeder appeared to be a preferred method for the isolation and maintenance of rabbit ES-like cell lines.


2006 ◽  
Vol 18 (2) ◽  
pp. 207 ◽  
Author(s):  
J. Kehler ◽  
M. Roelke-Parker ◽  
B. Pukazhenthi ◽  
W. Swanson ◽  
C. Ware ◽  
...  

Identification and characterization of spontaneously occurring genetic diseases in cats has permitted the development of valuable models for testing potential treatments of similar human diseases. With the near completion of the feline genome project, establishment of pluripotential feline embryonic stem (ES) cells would facilitate the targeting of specific genetic loci to produce new feline medical models. Two approaches were used to produce feline blastocysts in an attempt to establish feline ES cells in culture. Naive queens were superovulated with an intramuscular (i.m.) injection of 150 IU of equine chorionic gonadotropin (eCG) followed by an i.m. injection of 100 IU of human chorionic gonadotropin (hCG) 80 h later; follicles were aspirated laparoscopically 24-26 h later for subsequent in vitro fertilization (IVF). On average, 29 mature cumulus oocyte cell complexes (COCs) were recovered from each queen. IVF was performed in 50 microliter drops of complete Hams F-10 medium containing 30 000 fresh, motile sperm. COCs were cultured overnight in 5% carbon dioxide at 38�C, and residual adherent cumulus cells were removed 12 to 16 h later by trituration in 0.1% hyaluronidase. Embryos were cultured in fresh drops of Hams F-10, and on average 25% developed to the early blastocyst stage after 7 days. Alternatively, estrus was induced in queens with a single i.m. injection of 100 IU of eCG, and then 72 h later queens were permitted six supervised matings with a fertile tom over the next two days. Queens underwent ovariohysterectomy 7 days after their first copulation, and compacted morulae and early blastocysts were flushed from the oviducts and uterine horns. On average, eight embryos were recovered from the reproductive tract of each queen. Both in vivo- and in vitro-matured blastocysts were subsequently cultured in standard mouse ES cell medium on inactivated mouse embryonic fibroblasts. When they failed to hatch in culture after 3 days, a 0.5% pronase solution was used to dissolve the zonae pellucidae under microscopic visualization. Denuded expanded blastocysts adhered to the heterotypic feeder layer and primary inner cell mass (ICM) outgrowths formed within 4 days. Outgrowths were mechanically disaggregated into small clusters of 15 to 20 cells and re-plated on fresh feeders. These colonies grew slowly and were transferred after one week onto new feeder layers. The addition of murine or human recombinant leukemia inhibitory factor had no effect on the survival and proliferation of primary outgrowths or subsequent colonies. After 3 weeks, all colonies derived from both in vivo- and in vitro-matured blastocysts had either differentiated or died. Additional experiments are ongoing to test the effects of homotypic feeder layers and alternative growth factors on promoting the establishment and survival of feline ES cell lines. Ultimately, germline transmission of any putative feline ES cell lines will need to be demonstrated in vivo for their utility in gene targeting experiments to be realized.


2008 ◽  
Vol 20 (1) ◽  
pp. 223 ◽  
Author(s):  
T. Lonergan ◽  
A. Harvey ◽  
J. Zhao ◽  
B. Bavister ◽  
C. Brenner

The inner cell mass (ICM) of the blastocyst develops into the fetus after uterine implantation. Prior to implantation, ICM cells synthesize ATP by glycolytic reactions. We now report that cells of the ICM in 3.5-day-old mouse embryos have too few mitochondria to be visualized with either Mitotracker red (active mitochondria) or an antibody against complex I of OXPHOS. By comparison, all of the surrounding trophectoderm cells reveal numerous mitochondria throughout their cytoplasm. It has largely been assumed that embryonic stem (ES) stem cells derived from the ICM also have few mitochondria, and that replication of mitochondria in the ES cells does not begin until they commence differentiation. We further report that mouse E14 ES cells and monkey ORMES 7 ES cells have considerable numbers of active mitochondria when cultured under standard conditions, i.e., 5% CO2 in air. Both the mouse E14 and monkey ES cell lines expressed two markers of undifferentiated cells, Oct-4 and SSEA-4, and monkey ES cells expressed the undifferentiated cell marker Nanog; however, Oct-4 is nonspecific in monkey ES cells because trophectoderm also expresses this marker, unlike in mice. Ninety-nine percent of the E14 cells examined, and 100% of the ORMES 7 cells, have a visible mitochondrial mass when stained with either Mitoracker red or with an antibody against OXPHOS complex I. The ATP content in the mouse E14 cells (4.13 pmoles ATP/cell) is not significantly different (P = 0.76) from that in a mouse fibroblast control (3.75 pmoles ATP/cell). Cells of the monkey ORMES 7 cell line had 61% of the ATP/cell content (7.55 pmoles ATP/cell) compared to the monkey fibroblast control (12.38 pmoles ATP/cell). Both cell lines expressed two proteins believed to indicate competence of mitochondria to replicate: PolG, the polymerase used to replicate the mitochondrial genome, and TFAM, a nuclear-encoded transcription factor reported to regulate several aspects of mitochondrial function. Both proteins were found to co-localize in the mitochondria. We conclude that when the ICMs are isolated from blastocysts and used to establish these two ES cell lines in cell culture, mitochondrial biosynthesis is activated.


1994 ◽  
Vol 6 (5) ◽  
pp. 569 ◽  
Author(s):  
RA Cherny ◽  
TM Stokes ◽  
J Merei ◽  
L Lom ◽  
MR Brandon ◽  
...  

The practical application of advanced breeding technologies and genetic manipulation of domestic animals is dependent on the efficient and routine isolation of embryonic stem (ES) cell lines from these species. ES cell lines of proven totipotency have thus far been isolated only from the mouse. Murine ES cells can be identified by a number of criteria including morphology and characteristics in culture, the presence of specific markers, differentiative capacity and contribution to chimaeras. Reported cell lines derived from ruminant preimplantation embryos do not stably exhibit these characteristics. As demonstrated for the mouse, primordial germ cells may provide an alternative source for pluripotential cell lines. The isolation, culture and preliminary characterization of bovine primordial germ cell-derived (PGCd) cells are described in this paper. The PGCd cells are capable of differentiation in vitro and display murine ES cell markers including alkaline phosphatase. With farm animals, long generation intervals and small numbers of offspring make it important to develop techniques for evaluating chimaeric embryos in vitro before embarking on expensive in vivo programmes. A method for labelling putative pluripotential cells with a fluorochrome marker to follow the fate of such cells was developed. Labelled PGCd cells were injected into blastocysts and the chimaeric embryos were monitored in vitro. Preliminary results demonstrate that the labelled PGCd cells incorporate preferentially within the inner cell mass of the host blastocyst.(ABSTRACT TRUNCATED AT 250 WORDS)


Reproduction ◽  
2006 ◽  
Vol 132 (1) ◽  
pp. 59-66 ◽  
Author(s):  
S Tielens ◽  
B Verhasselt ◽  
J Liu ◽  
M Dhont ◽  
J Van Der Elst ◽  
...  

Embryonic stem (ES) cells are the source of all embryonic germ layer tissues. Oct-4 is essential for their pluripotency. Sincein vitroculture may influence Oct-4 expression, we investigated to what extent blastocysts culturedin vitrofrom the zygote stage are capable of expressing Oct-4 and generating ES cell lines. We comparedin vivowithin vitroderived blastocysts from B6D2 mice with regard to Oct-4 expression in inner cell mass (ICM) outgrowths and blastocysts. ES cells were characterized by immunostaining for alkaline phosphatase (ALP), stage-specific embryonic antigen-1 (SSEA-1) and Oct-4. Embryoid bodies were made to evaluate the ES cells’ differentiation potential. ICM outgrowths were immunostained for Oct-4 after 6 days in culture. A quantitative real-time PCR assay was performed on individual blastocysts. Of thein vitroderived blastocysts, 17% gave rise to ES cells vs 38% of thein vivoblastocysts. Six-day old outgrowths fromin vivodeveloped blastocysts expressed Oct-4 in 55% of the cases vs 31% of thein vitroderived blastocysts. The amount of Oct-4 mRNA was significantly higher for freshly collectedin vivoblastocysts compared toin vitrocultured blastocysts.In vitrocultured mouse blastocysts retain the capacity to express Oct-4 and to generate ES cells, be it to a lower level thanin vivoblastocysts.


2009 ◽  
Vol 21 (9) ◽  
pp. 1
Author(s):  
M. B. Nottle ◽  
I. M. Vassiliev ◽  
S. Vassilieva ◽  
L. F. S. Beebe ◽  
S. J. Harrison ◽  
...  

Embryonic stem (ES) cellshave the capacity for self renewal, can remain undifferentiated in long term culture and can contribute to all the cells in the body including the germ cells. EScells have been isolated in mice and have also been described for humans. However despite considerable effort for more than two decades ES cellswhich can contribute to the germline are yet to be isolated for the pig or any domestic species for that matter. We have developed a new method for isolating porcine ES cells which uses whole embryos cultured in alpha MEM with 10% serum replacement plus additives under 5% O2. Unlike methods employed previously this method results in homogenous outgrowths whose cells resemble ES cells and which express Oct 4 and Nanog and SSEA-1 [1]. These cells can be passaged and cryopreserved repeatedly resulting in the establishment of cell lines at similar efficiencies to that reported previously for 129Sv mice [2]. These cells can form embryoid bodies and can be differentiated to various cell types representative of all three germ layers [3]. Following their injection into blastocysts these cells localise /become incorporated in the inner cell mass and can be used to produce chimaeras when these embryos are transferred to recipient animals [2]. To date we have produced chimaeric pigs from one male ES cell line [2]. These are currently being mated to demonstrate germline transmission. Future studies will examine the applicability of our method to other species commencing with mice and cattle before extending these to humans.


2011 ◽  
Vol 23 (1) ◽  
pp. 251 ◽  
Author(s):  
R. Sharma ◽  
A. George ◽  
N. M. Kamble ◽  
K. P. Singh ◽  
S. K. Panda ◽  
...  

The present study was aimed at developing a system for long-term culture of buffalo embryonic stem (ES) cells, which, to our knowledge, have not been maintained beyond passage 10 in reports available to date, primarily because of lack of information on their specific requirements during in vitro culture. Inner cell mass (n = 181) cells, mechanically isolated from in vitro produced day 8 blastocysts, were cultured on mitomycin-C-treated buffalo fetal fibroblast feeder layers in stem cell medium (SCM), which consisted of Knockout-DMEM® + 15% Knockout serum replacer® + 1% minimal essential medium nonessential amino acids + 50 μg mL–1 of gentamicin, supplemented with 1000 IU mL–1 of leukemia inhibitory factor (LIF) and fibroblast growth factor-2 (FGF-2) at different concentrations. The medium was changed every 24 h. The primary colony formation rate, which was similar for 5, 10, 20, and 40 ng mL–1 of FGF-2 (63.7 ± 5.2, 65.7 ± 6.5, 57.0 ± 10.5, and 62.8 ± 13.30, respectively), was significantly higher (P ≤ 0.05) than that of controls (22.4 ± 5.5). In Experiment 2, ES-cell-like cell colonies at passages 6 through 7 (n = 441) were cultured for 5 to 6 days to examine the effects of media supplements. The percentage of colonies that survived was significantly higher (P ≤ 0.05) when these were cultured in SCM+LIF+5 ng mL–1 of FGF-2 (93.1 ± 1.8) than when these were cultured in SCM alone (73.5 ± 9.0) or in SCM supplemented with FGF-2 (88.8 ± 5.4) or LIF (85.8 ± 3.7). Following examination of the colony size at 0 and 120 h of culture, the increase in colony size was found to be nearly 4- (P ≤ 0.01) and 2-fold higher (P ≤ 0.05) with SCM+LIF+5 ng mL–1 of FGF-2 (41.9 ± 3.4) and SCM+FGF-2 (21.0 ± 3.0), respectively, than with SCM alone (10.8 ± 2.6) or with SCM+LIF (9.3 ± 3.3). The ES cell colonies cultured in the presence of FGF-2 were compact and had defined edges, whereas those cultured in its absence were less compact, irregularly shaped, and had less defined edges. To confirm the role of FGF-2 in maintenance of buffalo ES cells, the cell colonies cultured in the presence of 5 ng mL–1 of FGF-2 (n = 487) were exposed to different concentrations (10, 20, or 30 μM) of SU5402, a FGF-2 receptor inhibitor, for 5 to 6 days. The percentage of cell colonies that were found to have differentiated was significantly higher (P ≤ 0.05) when these had been cultured in the presence of 30 (78.6 ± 4.2) or 20 μM (47.9 ± 1.0) than when these were cultured with 10 (24.5 ± 5.1) or 0 μM (28.6 ± 2.3) of SU5402. Following culture in SCM+LIF+FGF-2, buffalo ES cells, in which the expression of pluripotency markers such as OCT-4, NANOG, and SOX-2 was regularly confirmed, have been maintained for more than 80 passages for over an year’s time to date, indicating that a combination of LIF and FGF-2 is beneficial for the maintenance of buffalo ES cells. Supported by NAIP grant No. C4/C-2067 from ICAR, India.


2011 ◽  
Vol 23 (1) ◽  
pp. 246
Author(s):  
S. H. Jeong ◽  
H. S. Kim ◽  
H. Lee ◽  
K. J. Uh ◽  
S. H. Hyun ◽  
...  

Bovine transgenic embryonic stem (ES) cells have not been reported yet because it seems that the derivation methods and the culture conditions for the inner cell mass are neither consistent nor optimized. Isolation of inner cell mass and primary culture of ES colonies is a critical step toward the establishment of authentic bovine ES cell lines. Herein, we reconstructed somatic cell nuclear transferred (SCNT) bovine blastocysts carrying a vector expressing the human INF-α gene, and isolated inner cell masses to derive transgenic bovine embryonic stem cells. In addition, we added 2 inhibitors, inhibition (2i system) of the mitogen-activated protein kinase (Erk1/2) cascade, PD0325901(3 Î1/4M), and of glycogen synthase kinase 3, CHIR99021 (1 Î1/4M), in the inner cell mass primary culture to check reliability of the 2i system for bovine ES culture. The 2 inhibitors made the morphology of colonies more intact, and primary colonies were better maintained in early passages. However, there were no significant effects on the attachment rate and maintenance in late passages (percent of percent over 3 passages: 2i system, 21/38 (55.3%); control, 22/42 (33.3%); P < 0.05). Inner cell masses were isolated mechanically and subcultured by an enzymatic in primary inner cell mass culture. Massive growth of trophoblast cells appears to inhibit inner cell mass growth, so hatching and hatched blastocysts were cut with a needle to remove trophoblast cells. Poor quality blastocysts were attached by the whole seeding method, and the margin trophoblast cells were consecutively removed in early passages. Established bovine ES cells express alkaline phosphatase, Oct-4, SSEA1, SSEA4, Tra-1–60, and Tra-1–81. We confirmed pluripotent gene expression of bovine ES like cells; Oct-4, SSEA1, and Rex 1 were positive, but trophoblast marker CDX2 was negative. This study shows that the 2i system is a reasonable method for use during inner cell mass culture in early passages. We established 6 transgenic nuclear transfer bovine ES cell lines with the 2i system and 4 in vitro fertilized bovine ES cell lines (all were over 10 passages).


2008 ◽  
Vol 20 (1) ◽  
pp. 218
Author(s):  
K. S. Ahn ◽  
S. J. Jeon ◽  
J. Y. Jung ◽  
T. Choi ◽  
S. J. Choi ◽  
...  

Embryonic stem (ES) cells isolated from inner cell mass cells of blastocyst-stage embryos are capable of differentiating into various cell lineages. Transplantation of these cells may potentially be a treatment for many degenerative diseases. Such cell therapy has often been tested using allografts of ES cells in mice. However, it has been difficult to locate transplanted ES cells and to avoid the rejection of allogeneic ES cells by the host. The aims of this study were to establish ES cell lines ubiquitously expressing enhanced green fluorescent protein (EGFP) and to test survival of ES cells in allografts into the cochlea of inbred C57BL/6 mice. Nine hatched blastocysts collected from a C57BL/6-green mouse that ubiquitously expresses transgene EGFP were plated onto an inactivated STO feeder layer. Two putative ES-like colonies were obtained from the plated blastocysts, and repeated subculture of these colonies produced two cell lines expressing EGFP. The cell lines possessed typical characteristics of ES cells, including densely packed colonies of the cells with prominent nucleoli, a high nuclear-cytoplasmic ratio, and high alkaline phosphatase activity. In suspension culture, these cells formed simple and cystic embryoid bodies. Undifferentiated EGFP-transgenic ES cells (106 cells per mouse) were injected into the cochlea of five C57BL/6 mice deafened by gentamycin treatment. Although no behavioral changes were noticed until four weeks after the transplantation, histological study revealed that grafted cells survived in the scala media of all injected mice. Incorporation of the cells expressing EGFP into the host was found along the auditory nerve fibers close to the organ of Corti. Such incorporation was also discovered in the area of the spiral ganglion neurons, cochlear sensory epithelia, and stria vascularis. Morphology and size of the cells varied depending on their sites of incorporation. The results from the present study demonstrate that, due to their survival in transplantation without allogeneic rejection as well as ubiquitous and stable expression of EGFP, ES cells from an EGFP-transgenic mouse may be a useful means of studying cell therapy.


2004 ◽  
Vol 16 (2) ◽  
pp. 217
Author(s):  
H.-Y. Son ◽  
C.-H. Park ◽  
S.-G. Lee ◽  
G.-S. Lee ◽  
H.-S. Kim ◽  
...  

The establishment of porcine embryonic stem (ES) cell lines should be useful for the production of transgenic pigs and studies of developmental gene regulation. Recent development of techniques for production of embryos in vitro could be a useful source for the isolation of ES cells. Therefore, to establish porcine ES cells, this study was conducted to isolate and culture inner cell mass (ICM) from in vitro-fertilized (IVF) porcine blastocysts. Cumulus-oocyte complexes were collected from prepubertal gilt ovaries, and matured in vitro. Oocytes were then fertilized using a modified swim-up method to prevent polyspermy and cultured to the blastocyst stage. Initial culture of ICM was conducted after either culture of whole embryos or isolation of ICM by immunosurgery. Developing IVF embryos were continuously cultured in 50% DMEM and 50% F-10 with 15% fetal bovine serum, 1% non-essential amino acids, 1.7mM L-glutamine, 1% penicillin/streptomycin, 0.1mM α-mercaptoethanol, 1000 unit recombinant human LIF, 40ngmL−1 recombinant human SCF and 20ngmL−1 recombinant human basic FGF on a mytomycin-C-inactivated murine embryonic fibroblast (MEF) feeder layer. Antibodies against porcine cells were produced in rabbit. After removal of zona pellucida, ICMs were isolated by immunosurgery and cultured on feeder cells the same as described above. After IVF, the rates of 2-cell embryos and blastocysts were 70.8% and 20.4%, respectively. Results from the isolation and culture of ICMs of porcine blastocysts are shown in following table. ICM isolated by immunosurgery showed better attachment to feeder cells and ES cell colony formation than cultured whole blastocysts. Morphology of colonies was similar to that of mouse ES cells, showing compact colonies with delineated boundary. Also, these colonies showed alkaline phosphatase activity. Porcine ES-cell like colonies were passed 3 times through physical separation on fresh feeder layers. These results indicated that porcine ES-like cell line can be established from IVF porcine blastocysts. Further characterization of these porcine ES-like cell lines is required. Table 1 Isolation and culture of ICM from porcine blastocyst produced by IVF


Sign in / Sign up

Export Citation Format

Share Document