oct4 expression
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 39)

H-INDEX

31
(FIVE YEARS 5)

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xuemei Wang ◽  
Lu Wang ◽  
Jie Dou ◽  
Tianjiao Yu ◽  
Pengbo Cao ◽  
...  

Abstract Background Asf1 is a well-conserved histone chaperone that regulates multiple cellular processes in different species. Two paralogous genes, Asf1a and Asf1b exist in mammals, but their role during fertilization and early embryogenesis remains to be investigated further. Methods We analyzed the dynamics of histone chaperone Asf1a and Asf1b in oocytes and pre-implantation embryos in mice by immunofluorescence and real-time quantitative PCR, and further investigated the role of Asf1a and Asf1b during fertilization and pre-implantation development by specific Morpholino oligos-mediated knock down approach. Results Immunofluorescence with specific antibodies revealed that both Asf1a and Asf1b were deposited in the nuclei of fully grown oocytes, accumulated abundantly in zygote and 2-cell embryonic nuclei, but turned low at 4-cell stage embryos. In contrast to the weak but definite nuclear deposition of Asf1a, Asf1b disappeared from embryonic nuclei at morula and blastocyst stages. The knockdown of Asf1a and Asf1b by specific Morpholino oligos revealed that Asf1a but not Asf1b was required for the histone H3.3 assembly in paternal pronucleus. However, knockdown of either Asf1a or Asf1b expression decreased developmental potential of pre-implantation embryos. Furthermore, while Asf1a KD severely reduced H3K56 acetylation level and the expression of Oct4 in blastocyst stage embryos, Asf1b KD almost eliminated nuclear accumulation of proliferating cell marker-PCNA in morula stage embryos. These results suggested that histone chaperone Asf1a and Asf1b play distinct roles during fertilization and pre-implantation development in mice. Conclusions Our data suggested that both Asf1a and Asf1b are required for pre-implantation embryonic development. Asf1a regulates H3K56ac levels and Oct4 expression, while Asf1b safeguards pre-implantation embryo development by regulating cell proliferation. We also showed that Asf1a, but not Asf1b, was necessary for the assembly of histone H3.3 in paternal pronuclei after fertilization.


2021 ◽  
Author(s):  
Weiwei Xie ◽  
Jun Yu ◽  
Yujia Yin ◽  
Xiaoqian Zhang ◽  
Xiaocui Zheng ◽  
...  

Abstract Background: Octamer-binding transcription factor 4 (OCT4) is a key stem cell transcription factor involved in the development of various cancers. The role of OCT4 in ovarian cancer (OC) progression and its molecular mechanism are not fully understood.Methods: First, immunohistochemistry (IHC) assays of ovarian normal tissues, OC samples, and metastatic tissues were performed to reveal the OCT4 expression profiles. We knocked down OCT4 in two OC cell lines (SKOV3 and A2780) using a lentiviral vector and performed in vitro and in vivo experiments. OCT4 was silenced to assess the proliferation, migration, and invasion of OC cells using CCK-8, colony formation, wound healing, and Transwell asssays. In addition, a nude tumor mouse model was used for the in vivo study. Mechanistically, we demonstrated that OCT4 influenced protein expression in the phosphoinositol 3-kinase (PI3K)/AKT/mTOR pathway and epithelial-mesenchymal transition (EMT)-related proteins by Western blotting and immunofluorescence (IF) assays.Results: OCT4 expression was significantly upregulated in OC samples and metastatic tissues. OCT4 silencing notably inhibited the proliferation, migration, and invasion of OC cells in vitro and in vivo. Moreover, the expression of p-PI3K, p-AKT, and p-mTOR was downregulated after OCT4 knockdown. EMT in OC samples was enhanced by OCT4.Conclusions: Our study shows that OCT4 promotes the proliferation, migration, and invasion of OC cells by participating in the PI3K/AKT/mTOR signaling axis, suggesting that it could serve as a potential therapeutic target for OC patients.


2021 ◽  
Vol 11 (11) ◽  
pp. 2210-2215
Author(s):  
Yuan Li ◽  
Yongjiang Dai ◽  
Shun Bai ◽  
Bin Yang

Micro-RNA has a very important role in gene regulation. The stem gene Oct4 is related with the growth, mobility, and infiltration of skin cancer cells. Studying the regulatory mechanism of micro-RNAs of Oct4 in skin cancer cells is of important clinical significance. Oct4 gene was analyzed using bioinformatics methods to find mir-RNA with regulatory functions. mir-RNA high-expression vector and suppression vector with pcDNA3.1-EGFP was transfected to skin cancer cell line HS-4 followed analysis of Oct4 expression 24 h and 48 h after transfection and transwell in-vitro cell invasion assay. Bioinformatics showed that mir-335 has relationship with the Oct4 gene. pcDNA3.1-EGFP-335-up and pcDNA3.1-EGFP-335-down were successfully constructed. 24 and 48 hours after transfection, the Oct4 expression in the high-expression group was gradually and significantly decreased (P < 0.05). Meanwhile, the cell migration and infiltration capacity was decreased significantly and showed time dependence with significant differences between groups (P < 0.05). mir-335 expression in suppression group was reduced without change of Oct4 (P > 0.05). Increased mir-335 can decrease the performance of Oct4 in skin cancer cells and inhibit the infiltration ability of cells without affecting cell infiltration capability.


Endocrinology ◽  
2021 ◽  
Author(s):  
Qiaozhi Wang ◽  
Yilin Yao ◽  
Xiaoshu Ma ◽  
Baoqiang Fu ◽  
Ningxin Li ◽  
...  

Abstract Octamer-binding transcription factor 4 (OCT4) regulates the pluripotency of stem cells and also plays important roles in granulosa cells growth, which is regulated by follicle-stimulating hormone (FSH). Thyroid hormone (TH) is important for the development and maturation of follicles and the maintenance of various endocrine functions. Although 3,5,3′-triiodothyronine (T3) enhances the effects of FSH on the regulation of the growth of granulosa cells and development of follicles, it is unclear whether and how TH combines with FSH to regulate OCT4 expression in granulosa cells during the preantral to early antral transition stage. Our results showed that T3 enhanced FSH-induced OCT4 expression. However, T3/FSH-induced cellular growth was reduced by OCT4 siRNA. OCT4 knockdown significantly increased the number of apoptotic cell. Moreover, T3 combined with FSH to increase ERβ expression, but did not significantly affect ERα expression. ERβ knockdown dramatically decreased T3/FSH-induced OCT4 expression and cell development and increased cell apoptosis. The PI3K/Akt pathway was involved in hormones inducing OCT4 and ERβ expressions. Furthermore, the hormones regulating OCT4 and ERβ expressions were regulated by cytochrome P450 lanosterol 14a-demethylase (CYP51), a key enzyme in sterol and steroid biosynthesis. T3 and FSH cotreatment potentiated cellular development by upregulating OCT4 expression, which is mediated by CYP51 and ERβ. These regulatory processes are mediated by the PI3K/Akt signaling pathway. These findings suggest that OCT4 mediates the T3 and FSH-induced development of follicles.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xianglin Mei ◽  
Hanhan Zhao ◽  
Huihan Ai ◽  
Shuyue Wang ◽  
Zhenbo Song ◽  
...  

Abstract Background Stem cells have been extensively explored for a variety of regenerative medical applications and they play an important role in clinical treatment of many diseases. However, the limited amount of stem cells and their tendency to undergo spontaneous differentiation upon extended propagation in vitro restrict their practical application. Octamer-binding transcription factor-4 (Oct4), a transcription factor belongs to the POU transcription factor family Class V, is fundamental for maintaining self-renewal ability and pluripotency of stem cells. Methods In the present study, we used the previously constructed luciferase reporters driven by the promoter and 3’-UTR of Oct4 respectively to screen potential activators of Oct4. Colony formation assay, sphere-forming ability assay, alkaline phosphatase (AP) activity assay and teratoma-formation assay were used to assess the role of modaline sulfate (MDLS) in promoting self-renewal and reinforcing pluripotency of P19 cells. Immunofluorescence, RT-PCR, and western blotting were used to measure expression changes of stem-related genes and activation of related signaling pathways. Results We screened 480 commercially available small-molecule compounds and discovered that MDLS greatly promoted the expression of Oct4 at both mRNA and protein levels. Moreover, MDLS significantly promoted the self-renewal capacity of P19 cells. Also, we observed that the expression of pluripotency markers and alkaline phosphatase (AP) increased significantly in MDLS-treated colonies. Furthermore, MDLS could promote teratoma formation and enhanced differentiation potential of P19 cells in vivo. In addition, we found that in the presence of LIF, MDLS could replace feeder cells to maintain the undifferentiated state of OG2-mES cells (Oct4-GFP reporter gene mouse embryonic stem cell line), and the MDLS-expanded OG2-mES cells showed an elevated expression levels of pluripotency markers in vitro. Finally, we found that MDLS promoted Oct4 expression by activating JAK/STAT3 and classic Wnt signaling pathways, and these effects were reversed by treatment with inhibitors of corresponding signaling pathways. Conclusions These findings demonstrated, for the first time, that MDLS could maintain self-renewal and pluripotency of stem cells.


2021 ◽  
Vol 26 ◽  
pp. 100918
Author(s):  
Tadasuke Nozaki ◽  
Masayuki Takahashi ◽  
Tatsuya Ishikawa ◽  
Arisa Haino ◽  
Mineaki Seki ◽  
...  
Keyword(s):  

Author(s):  
Kee-Pyo Kim ◽  
Dong Wook Han ◽  
Johnny Kim ◽  
Hans R. Schöler

AbstractEctopic expression of Oct4, Sox2, Klf4 and c-Myc can reprogram somatic cells into induced pluripotent stem cells (iPSCs). Attempts to identify genes or chemicals that can functionally replace each of these four reprogramming factors have revealed that exogenous Oct4 is not necessary for reprogramming under certain conditions or in the presence of alternative factors that can regulate endogenous Oct4 expression. For example, polycistronic expression of Sox2, Klf4 and c-Myc can elicit reprogramming by activating endogenous Oct4 expression indirectly. Experiments in which the reprogramming competence of all other Oct family members tested and also in different species have led to the decisive conclusion that Oct proteins display different reprogramming competences and species-dependent reprogramming activity despite their profound sequence conservation. We discuss the roles of the structural components of Oct proteins in reprogramming and how donor cell epigenomes endow Oct proteins with different reprogramming competences.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 637
Author(s):  
Chiara Verdelli ◽  
Annamaria Morotti ◽  
Giulia Stefania Tavanti ◽  
Rosamaria Silipigni ◽  
Silvana Guerneri ◽  
...  

Tumors of the parathyroid glands are the second most common endocrine neoplasia. Epigenetic studies revealed an embryonic signature involved in parathyroid tumorigenesis. Here, we investigated the expression of the stem core genes SOX2, POU5F1/OCT4, and NANOG. Rare cells within normal parathyroid glands expressed POU5F1/OCT4 and NANOG, while SOX2 was undetectable. Nuclear SOX2 expression was detectable in 18% of parathyroid adenomas (PAds, n = 34) involving 5–30% of cells, while OCT4 and NANOG were expressed at the nuclear level in a more consistent subset of PAds involving 15–40% of cells. Most parathyroid carcinomas expressed the core stem genes. SOX2-expressing cells co-expressed parathormone (PTH). In PAds-derived primary cultures, silencing of the tumor suppressor gene MEN1 induced the expression of SOX2, likely through a MEN1/HAR1B/SOX2 axis, while calcium-sensing receptor activation increased SOX2 mRNA levels through YAP1 activation. In addition, inducing nuclear β-catenin accumulation in PAds-derived primary cultures by short-term incubation with lithium chloride (LiCl), SOX2 and POU5F1/OCT4 expression levels increased, while NANOG transcripts were reduced, and LiCl long-term incubation induced an opposite pattern of gene expression. In conclusion, detection of the core stem genes in parathyroid tumors supports their embryogenic signature, which is modulated by crucial genes involved in parathyroid tumorigenesis.


Author(s):  
Jian Chang ◽  
Hanjun Li ◽  
Zhongchao Zhu ◽  
Pei Mei ◽  
Weimin Hu ◽  
...  

Abstract Aim Given the fact that tumor-associated macrophage-derived extracellular vesicles (EVs) are attributable to tumor aggressiveness, this research intends to decode the mechanism of M2 macrophage-derived EVs in the differentiation and activities of pancreatic cancer (PaCa) stem cells via delivering microRNA (miR)-21-5p. Methods Polarized M2 macrophages were induced, from which EVs were collected and identified. miR-21-5p expression in M2 macrophage-derived EVs was tested. After cell sorting, CD24+CD44+EpCAM+ stem cells were co-cultured with M2 macrophages, in which miR-21-5p was upregulated or downregulated. The effects of M2 macrophage-derived EVs and miR-21-5p on Nanog/octamer-binding transcription factor 4 (Oct4) expression, sphere formation, colony formation, invasion and migration capacities, apoptosis, and in vivo tumorigenic ability were examined. Krüppel-like factor 3 (KLF3) expression and its interaction with miR-21-5p were determined. Results M2 macrophage-derived EVs promoted PaCa stem cell differentiation and activities. miR-21a-5p was upregulated in M2 macrophage-derived EVs. miR-21a-5p downregulation in M2 macrophage-derived EVs inhibited Nanog/Oct4 expression and impaired sphere-forming, colony-forming, invasion, migration, and anti-apoptosis abilities of PaCa stem cells in vitro and tumorigenic ability in vivo. miR-21-5p targeted KLF3 to mediate the differentiation and activities of PaCa stem cells, and KLF3 was downregulated in PaCa stem cells. Conclusion This work explains that M2 macrophage-derived exosomal miR-21a-5p stimulates differentiation and activity of PaCa stem cells via targeting KLF3, paving a novel way for attenuating PaCa stemness. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document