Doppler evaluation of physiologic peripheral pulmonic stenosis in newborns

1992 ◽  
Vol 2 (2) ◽  
pp. 179-183
Author(s):  
Deborah M. Friedman ◽  
John Fernandes ◽  
Monika Rutkowski ◽  
Delores Danilowicz

AbstractA common systolic ejection murmur of the neonate has been attributed to physiologic peripheral pulmonic stenosis. We investigated this auscultatory finding using duplex pulsed Doppler. Three groups of normal fuliterm neonates less than one week old were studied—10 without murmurs, 10 with grade 1/6 murmurs and nine with at least grade 2/6 murmurs. We measured the anatomical size and peak flow velocities in the main pulmonary artery and left and right branches, the peak velocity in the right ventricular outflow tract, and the bifurcation angle. Flow gradients were calculated as 4 (Vmax)2 Groups were compared by t-tests. A loud peripheral pulmonic stenosis murmur was associated with increased pulmonary artery velocities, with left pulmonary artery velocity the most discriminating variable (1.3 ± 0.29 vs 0.94 ± 0.19 m/s; p ≤ 0.05). Although the peak gradient never exceeded 12 mmHg, there was an increased gradient in the loud murmur group (8.7 ± 2.6 vs 5.7 ± 2.2 mmHg; p ≤ 0.05) which may even be underestimated by the lack of angle correction. The left pulmonary artery diameter was also larger in the loud murmur group, but there were no other anatomic or volumetric flow differences between groups. The soft murmur group could not be separated from normals. We conclude that Doppler techniques can confirm the physiologic basis of peripheral pulmonic stenosis murmurs.

2016 ◽  
Vol 26 (7) ◽  
pp. 1260-1265 ◽  
Author(s):  
Eimear McGovern ◽  
Conall T. Morgan ◽  
Paul Oslizlok ◽  
Damien Kenny ◽  
Kevin P. Walsh ◽  
...  

AbstractWe retrospectively reviewed all the children with right ventricular outflow tract obstruction, hypoplastic pulmonary annulus, and pulmonary arteries who underwent stenting of the right ventricular outflow tract for hypercyanotic spells at our institution between January, 2008 and December, 2013; nine patients who underwent cardiac catheterisation at a median age of 39 days (range 12–60 days) and weight of 3.6 kg (range 2.6–4.3 kg) were identified. The median number of stents placed was one stent (range 1–4). The median oxygen saturation increased from 60% to 96%. The median right pulmonary artery size increased from 3.3 to 5.5 mm (−2.68 to −0.92 Z-score), and the median left pulmonary artery size increased from 3.4 to 5.5 mm (−1.93 to 0 Z-scores). Among all, one patient developed transient pulmonary haemorrhage, and one patient had pericardial tamponade requiring drainage. Complete repair of tetralogy of Fallot +/− atrioventricular septal defect or double-outlet right ventricle was achieved in all nine patients. Transcatheter stent alleviation of the right ventricular outflow tract obstruction resolves hypercyanotic spells and allows reasonable growth of the pulmonary arteries to facilitate successful surgical repair. This represents a viable alternative to placement of a systemic-to-pulmonary artery shunt, particularly in small neonates.


2017 ◽  
Vol 136 (3) ◽  
pp. 262-265 ◽  
Author(s):  
Turgut Karabag ◽  
Caner Arslan ◽  
Turab Yakisan ◽  
Aziz Vatan ◽  
Duygu Sak

ABSTRACT CONTEXT: Obstruction of the right ventricular outflow tract due to metastatic disease is rare. Clinical recognition of cardiac metastatic tumors is rare and continues to present a diagnostic and therapeutic challenge. CASE REPORT: We present the case of a patient who had severe respiratory insufficiency and whose clinical examinations revealed a giant tumor mass extending from the right ventricle to the pulmonary artery. We discuss the diagnostic and therapeutic options. CONCLUSION: In patients presenting with acute right heart failure, right ventricular masses should be kept in mind. Transthoracic echocardiography appears to be the most easily available, noninvasive, cost-effective and useful technique in making the differential diagnosis.


Author(s):  
Joseph R. Nellis ◽  
Charles M. Wojnarski ◽  
Zachary W. Fitch ◽  
Nicholas A. Andersen ◽  
Joseph W. Turek

Pulmonary fibroelastomas are a rare primary cardiac tumor with less than 50 cases reported in the literature to date. We performed a minimally invasive valve-sparing tumor resection through a left anterior mini-incision (LAMI). The procedure was performed without cardiac arrest or aortic cross clamp, expediting postoperative recovery and allowing for an uncomplicated discharge on postoperative day 5. LAMI is a safe and reliable alternative to median sternotomy for patients requiring interventions on the right ventricular outflow tract and main pulmonary artery, including pulmonary fibroelastoma resection and pulmonary valve replacement when needed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fangzhengyuan Yuan ◽  
Chuan Liu ◽  
Shiyong Yu ◽  
Shizhu Bian ◽  
Jie Yang ◽  
...  

IntroductionPulmonary artery pressure (PAP) is increased and right ventricular (RV) function is well preserved in healthy subjects upon exposure to high altitude (HA). An increase in PAP may trigger notching of the right ventricular outflow tract Doppler flow velocity envelope (RVOT notch), which is associated with impaired RV function in patients with pulmonary hypertension. However, whether HA exposure can induce RVOT notch formation and the subsequent impact on cardiac function in healthy subjects remains unclear.MethodsA total of 99 subjects (69 males and 30 females) with a median age of 25 years were enrolled in this study; they traveled from 500 to 4100 m by bus over a 2-day period. All subjects underwent a comprehensive physiological and echocardiographic examination 1 day before ascension at low altitude and 15 ± 3 h after arrival at HA. The RVOT notch was determined by the presence of a notched shape in the RVOT Doppler flow velocity envelope. The systolic PAP (SPAP) was calculated as Bernoulli equation SPAP = 4 × (maximum tricuspid regurgitation velocity)2+5 and mean PAP (mPAP) = 0.61 × SPAP+2. Cardiac output was calculated as stroke volume × heart rate. Pulmonary capillary wedge pressure (PCWP) was calculated as 1.9+1.24 × mitral E/e’. Pulmonary vascular resistance (PVR) was calculated as (mPAP-PCWP)/CO.ResultsAfter HA exposure, 20 (20.2%) subjects had an RVOT notch [notch (+)], and 79 (79.8%) subjects did not have an RVOT notch [notch (−)]. In the multivariate logistic regression analysis, the SPAP, right ventricular global longitude strain (RV GLS), and tricuspid E/A were independently associated with the RVOT notch. The SPAP, mPAP, PVR, standard deviations of the times to peak systolic strain in the four mid-basal RV segments (RVSD4), peak velocity of the isovolumic contraction period (ICV), and the peak systolic velocity (s’) at the mitral/tricuspid annulus were increased in all subjects. Conversely, the pulse oxygen saturation (SpO2), RV GLS, and tricuspid annulus plane systolic excursion (TAPSE)/SPAP were decreased. However, the increases of SPAP, mPAP, PVR, and RVSD4 and the decreases of SpO2, RV GLS, and TAPSE/SPAP were more pronounced in the notch (+) group than in the notch (−) group. Additionally, increased tricuspid ICV and mitral/tricuspid s’ were found only in the notch (−) group.ConclusionHA exposure-induced RVOT notch formation is associated with impaired RV function, including no increase in the tricuspid ICV or s’, reduction of RV deformation, deterioration in RV-pulmonary artery coupling, and RV intraventricular synchrony.


Sign in / Sign up

Export Citation Format

Share Document